

Joint Forum for Dialogue with Regional Industrial Partners

International Collaboration between Universities and Industries November 25, 2005

21st Century COE (Center of Excellence) Programs at Tohoku University

Shigenao Maruyama Institute of Fluid Science, Tohoku University, Sendai, Japan

- 1. International Center of Research & Education for Materials, Prof. A. Inoue
- 2. Future Medical Engineering based on Bio-nanotechnology, Prof. M. Sato
- 3. System Construction of Global-Network Oriented Information Electronics, Prof. T. Uchida
- 4. The Exploration of the Frontiers of Mechanical Science Based on Nanotechnology, Prof. T. Shoji
- 5. International COE of Flow Dynamics, Prof. S. Maruyama

Focused key technologies for Industry collaboration

- Bulk Metallic Glasses, Inoue COE
- Bio-Engineering, Sato COE
- Electronic Devices, Uchida COE
- Nano-mechanics, Shoji COE
- Aeronautics, Maruyama COE

Inoue COE

Background - super precision gear

Micromachine Key device Small & high power motor

μFR (Micro • flying • robot)
(SEIKO EPSON)

Mush (SEIKO EPSON)

Micro-zooming mechanisn (OLYMPUS)

(expect)

Handpiece

Technical difficulties of constructing parts
•Miniaturizing

- •Strengthening
- Precision
- Surface flatness

Durability of glassy alloy gears

lacktriangle Accelerating durability test for conventional geared-motor with d = 2.4 mm

Construction of developed geared-motor

- World smallest size with d = 1.5 mm, l = 9.4 mm
- 2 stages stacked gear-ratio reduction system
- High gear-reduction ratio of 40:1
- High rotating torque (0.1mNm) by glassy alloy gears
- Higher torque (≥ 2 mNm) is possible by more stages stacking

Future vision for commercialization and viability

Market of geared motor (billion ¥) On the R&D Testing market 2006 2009 2007 2008 2010 2011 Year

Advanced medical equipments

Inspection robot Precision machine Metallic glass

Metallic glass
precision parts
\$13 billion
Market
(2010 expected by METI)

Micro-factory

Robots for home & industrie use

Bio-Engineering using MEMS(Micro Electro Mechanical Systems) Technology, Sato COE

Active Bending Catheter with CCD Imager

External Diameter: 5 mm, Maximum Bending Angle: 90 degrees

(Curvature Radius: 29 mm)

"Liquid crystal displays "

Department of Electronic Engineering, Graduate School of Engineering, Tatsuo Uchida

- (1) Development of Color LCD (Micro Color-Filter Method)
- (2) Development of wide viewing angle LCD with fast response (OCB-mode):
- (3) Development of low power LCD without color filter (Color Field sequential OCB-mode LCD)
- (4) Development of ultra low power LCD (Reflective color LCD without back light)

(1) Development of Color LCD

(Micro Color-Filter Method)

T. Uchida, et al.: Proc. Eurodisplay, p39 (1981), Conf. Rec. of IDRC p.166 (1982), IEEE Trans., ED-30, p.503 (1983).

(3) Development of low power LCD without color filter (Color Field sequential OCB-mode LCD)

Red Field (5.5msec)

Green Field (5.5msec)

Blue Field (5.5msec)

T.Uchida, et al. (Tohoku University): Int'l Display Res. Conf., p.37 (1997).

Conventional color filter type

Color field sequential type (color filter less)

Resolution: 3times higher

Brightness: 4times higher

6" VGA Field sequential OCB-LCD (Aomori-ken National Project)

(4) Development of ultra low power (Reflective color LCD without back light)

T. Koizumi and T. Uchida: Proc. SID, 29 (2), pp. 157-160 (1988).

Reflective color liquid crystal display (Sharp Corp. PDA)

Y.Ishii and M.Hijikigawa (Sharp Corp.): Asia Display, p.119 (1998).

Reflective color liquid crystal display (ALPS Electric Corp.)

Most recent reflective color LCD (Test-fabricated in our laboratory)

Shoji COE

Micro opto-electrical devices

Precision Machining Lab., Tohoku Univ.

Chip Scale Optics

Ultra-thin fiberscope

Precision Machining Lab., Tohoku Univ.
Photograph by OLYMPUS

Intravascular Endoscopes (2.2 diameter)

Micro-grinding of WC dies

Precision Machining Lab., Tohoku

Univ.

Ground micro-aspherical WC dies

Precision Machining Lab., Tohoku

Univ.

Micro Aspherical Dies:

R = 0.567 mm

K = -1.684802

A4 = 0.8901

A6 = -0.276

high-pressure turbulent flame

Flow Dyanamics, Maruyama COE

Environment

Vortex after islands

Academic Area

Intravascular bloodstream

Flows around crystal

Boomless Supersonic Transport

- Proposal of Supersonic Biplane by Busemann's Concept
- Prof. Obayashi et al.

M=2.0, t/c=0.05, Alpha=1deg. Cl=0.1047, Cd=0.00625, L/D=16.75

The first airplane by Wright brothers

3-D Numerical Simulation

Development of Diamond Slider

CVD Diamond Specula Surface

Mirror polished diamond plateau

Diamond and Its ultra-smooth polishing

Application

Linear Slider

Prof.T. Takagi, et al., IFS, Tohoku Univ.

International Collaboration between Universities and Industries November 25, 2005

Thank you for your attention

Shigenao Maruyama Institute of Fluid Science, Tohoku University, Sendai, Japan