

Exa-Scale Computingへの道

中島 浩 (京都大学/HPCIコンソーシアム理事)

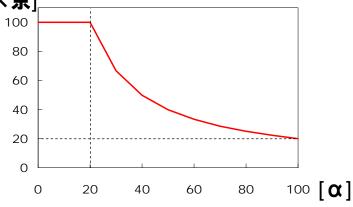
- 道の遠さ&険しさ
 - Exa-Scale **の見通し@**2010
 - 遠さ&険しさの度合い: 性能×100@...
- 道程を見通す活動@日本
 - 全体像
 - それぞれの役割
- 現時点での見通し@日本
 - 体制像
 - Post **京システム像** (技術的)
 - Post **京システム像** (理念的)

道の遠さ&険しさ 道の遠さ&険しさ Exa-Scale**の見積**@2010

year		2009	2011	2018	2018/
		Jaguar	京		2011
sys. peak perf.	[PF/s]	2	11	1000	O(100)
sys. power	[MW]	6	15	20	O(1)
sys. memory	[PB]	0.3	1.4	50	O(10)+
node perf.	[TF/s]	0.13	0.13	1-10	O(10-100)
node mem b/w	[GB/s]	25	64	~1000	O(10)
node conc.		48	64	10 ³ -10 ⁴	O(10-100)
node inj. b/w	[GB/s]	3.5	20	200-400	O(10)
total #nodes	$[x10^3]$	19	88	100-1000	O(1-10)
total conc.	$[x10^6]$	0.9	5.6	1000	O(100)
storage	[PB]	15	10+	~1000	O(10)+
storage b/w	[TB/s]	0.2	0.7	60	O(100)
sys. MTTI	[day]	~10	~10?	~1	O(1/10)

based on presentation by P. Beckman in IESP WS @ Oxford, 2010 http://www.exascale.org/mediawiki/images/7/75/IESP-Oxford-Intro-Beckman.pdf

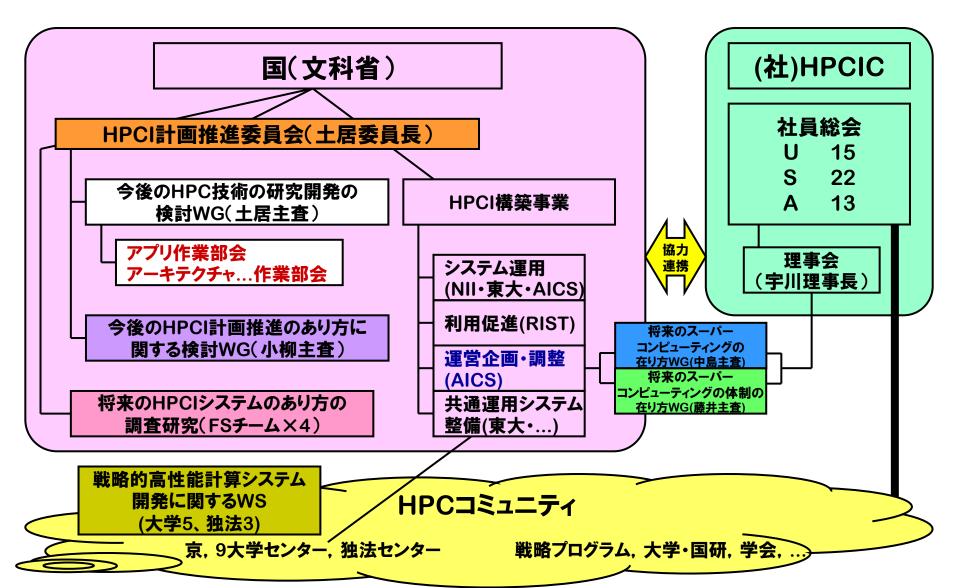
🤶 遠さ&険しさの度合い (1/3)


- 作る険しさ: 性能×100@電力×1
 - 性能/電力比
 - SPARC64 VIIIfx (京): 128GF/s@60W = 2.2GF/s/W
 - PowerPC A2 (BG/Q): 205GF/s@55W = 3.7GF/s/W
 - Sandy Bridge: 166GF/s@115W = 1.4GF/s/W
 - Xeon Phi: 1TF/s@225W = 4.5GF/s/W
 - Exa-Target: 1EF/s@20MW → 50GF/s/W × 2?
 - Xeon Phi vs Exa-Target node

		Xeon Phi	Exa-Target	ratio
perf.	[TF/s]	1000	1-10	O(1-10)
mem b/w	[GB/s]	320	~1000	O(1)+
conc.		960	10 ³ -10 ⁴	O(1-10)
inj. b/w	[GB/s]	15	200-400	O(10)+
power eff.	[GF/s/W]	4.5	~100	O(10)+

🤶 遠さ&険しさの度合い (2/3)

- 使う険しさ: 演算性能×100@メモリ性能×10+
 - ■メモリ/演算性能比
 - SPARC64 VIIIfx (京): 128GF/s@64GB/s = 0.5B/F
 - PowerPC A2 (BG/Q): 205GF/s@43GB/s = 0.2B/F
 - Sandy Bridge: 166GF/s@51GB/s = 0.3B/F
 - Xeon Phi: 1TF/s@320GB/s = 0.3B/F
 - Exa-Target: 10TF/s@1TB/s → 0.1B/F
 - 仮に 0.1B/F とすると
 - メモリバンド幅使用率= α % @ 京のプログラムの(理想)性能 (実質 α ≒ 100%が多数) [性能×京]_____

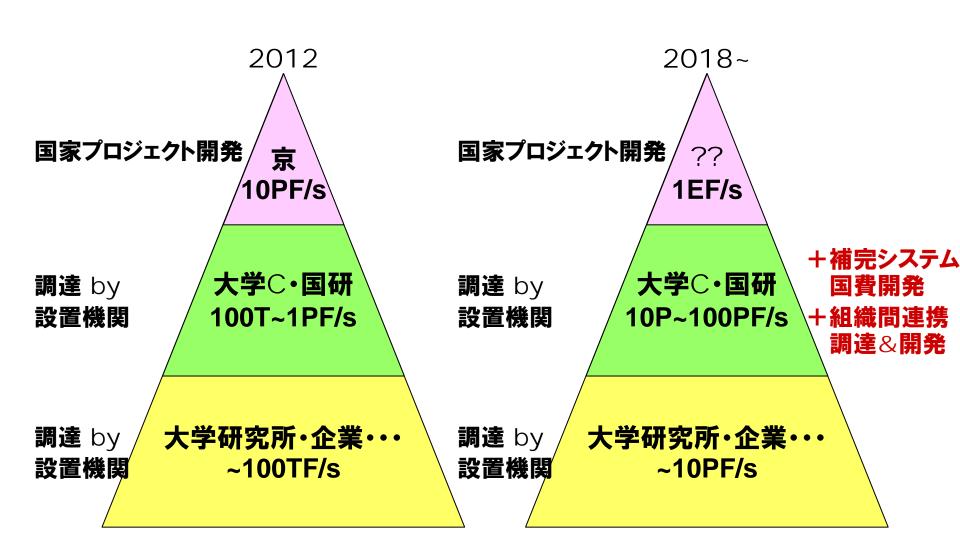


道の遠さ&険しさ

🤶 遠さ&険しさの度合い (3/3)

- 作る&使う険しさ: 性能×100@並列度×100
 - 並列度×100≒トランジスタ数×100
 - →故障率×1 という訳にはいかない (たとえば×10)
 - 故障率×100にしない工夫
 - 故障率×10 (MTTI<1**日) でも運用する工夫**
 - 故障率×1○ でもアプリが長時間走る工夫
 - 並列度×100の源泉は?
 - weak scaling (問題サイズx100) → 実行時間>(or≫)x1
 - strong scaling → 遅延影響介, 通信/計算比介, non-trivial な並列性利用
 - wide SIMD \(\bigsir \) vector but \(\neq \) vector
 - ← cache に当てなければ話にならない
 連続データでなければ話にならない
 vector の苦手 (short vec., 条件節, ...) は共有

道程を見通す活動@日本 全体像

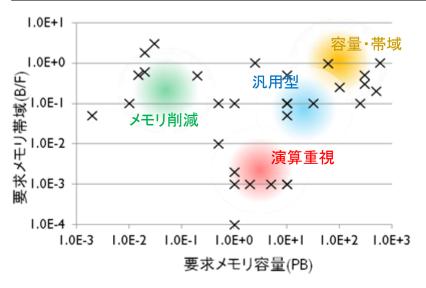

- HPCI計画推進委員会(土居委員長+9委員, '10~)
 - 文科省HPC施策の取りまとめ
- 技術も含む全般的検討
 - 文科省
 - 今後のHPC技術の研究開発の検討WG (土居主査+18委員, '11): 現状&課題分析, 検討課題整理
 - 今後のHPCI計画推進のあり方に関する検討WG (小柳主査 +24委員, '12~13): 論点整理, システム&体制像
 - 理研+HPCIコンソーシアム
 - 将来のスーパーコンピューティングの在り方に関する検討WG (中島主査+7委員, '12~13): post 京システム像 (理念的)
 - 将来のスーパーコンピューティングの体制の在り方に関する検討WG (藤井主査+6委員, '12~13): HPCI体制像

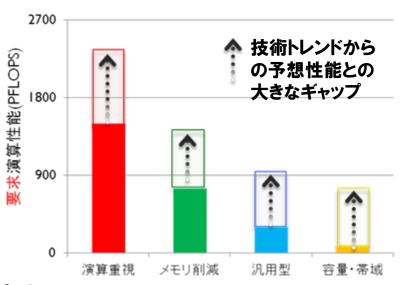
道程を見通す活動@日本 それぞれの役割 (2/2)

■ 技術検討

- 戦略的高性能計算システム開発に関するWS ('10~)
- **土居**WG**作業部会**('11)
 - アプリケーション作業部会: アプリ@Exa, 要求性能パラメータ
 - コンピュータアーキテクチャ・コンパイラ・システムソフトウェア作業部会: post 京候補システム像(技術的), 技術ロードマップ
- 将来のHPCIシステムのあり方の調査研究('12~13)
 - アプリケーション分野から見た … (代表:富田@理研AICS)
 - 科学的成果@Exa, ベンチマーク by 代表的Exaアプリ
 - レイテンシコアの高度化・高効率化による … (代表:石川@東大)
 - 演算加速機構を持つ … (代表:佐藤@筑波大)
 - 高バンド幅アプリケーションに適した … (代表:小林@東北大)
 - 各システムの設計パラメータ検討, アプリ性能予測

現時点での見通し@日本 体制像




現 C

現時点での見通し@日本

Post 京システム像 (技術的)

	peak perf.	mem. b/w	mem. cap.	inj. b/w
	[PF/s]	[PB/s]	[PB]	[GB/s]
IESP	1000	~100	50	200-400
汎用型	200- 400	20- 40	20 - 40	
容量帯域重視	50- 100	50-100	50 -100	30-150
メモリ容量削減	500-1000	250-500	0.1- 0.2	30-130
演算重視	1000-2000	5- 10	5 - 10	

source: 今後のHPCI技術開発に関する報告書(概要)

http://www.mext.go.jp/b_menu/shingi/chousa/shinkou/028/shiryo/1321887.htm

Post 京システム像 (理念的・1/2)

- 開発の必要性・意義
 - 科学技術成果を創出する最先端研究開発装置
 - 先駆的ハード・ソフト技術を具現化するプラットフォーム
 - 日本で自立的・継続的に保有・開発すべき技術
 - 国際的標準利用・標準形成のための源泉技術
- システム完成時期・規模・性能・アーキテクチャ
 - 完成時期=2017~2018 (≒京の引退次期)
 - peak perf. target=1EF/s (w/ 科学的成果裏付)
 - アーキテクチャ: 汎用型&単一 vs 適合型&複数
 - 複数開発困難→単一が必然→広範囲のアプリ適合が必要
 - 多様なアプリ対応 by 第2階層, 適合型メカニズム部分導入, ...
 - アーキテクチャ&多様アプリ対応策の判断基準
 - アプリ性能/電力、初期成果・実現コスト、技術継続性・波及効果、 世界的HPC技術トレンド、下方展開、後続開発・整備計画

Post 京システム像 (理念的・2/2)

■ 技術開発要素

- ハードウェア (プロセッサ, メモリ階層, 結合網, 1/〇, ...)
 - 選択・集中 based on 技術的優位性, ハードコスト, ソフトコスト,
 国産技術推進, 将来的発展性, 技術投資回収, ...
 - 国産プロセッサ w/ competitive cost/performance
- ハード+システムソフト+アプリソフト三位一体課題
 - B/F低下→システムソフトでの補償+B抑制アルゴリズム開発
 - 故障率増加&性能電力比相対的低下 →ハード+OS協調,システムソフト技術 for アプリ対応
- システムソフト (mainly for アプリプログラミング)
 - コンパイラ技術→アーキテクチャ進化・変遷の影響最小化
 - ライブラリ+フレームワーク→アーキテクチャ進化・変遷への耐性
 - アルゴリズムレベルでの並列度拡張サポート

(とりあえずの) まとめ

- Exa-Scale への道
 - かなり険しい due to 収穫逓減, no free lunch, ...
 - 先送りしても険しさは緩和されない (だろう)
 - あきらめるとそれっきりになる (可能性大)
- 登攀挑戦@日本
 - 1EF/s@2018 に向けて動き出しつつある (ような感じ:-)
 - あらゆる stake holder (incl. yourself) にとっての commitment chance
- **険路登攀法** for app. people
 - がむしゃらに攀じ登る
 - いずれできるリフトの予約をする
 - ライブラリ/フレームワークを使う・作らせる・作る予算を取る・・・
 - 魔法の絨毯をひたすら待つ