設計情報学研究会 DI Lecture Series 5 2013年11月1日 九州工業大学

応答曲面法を用いた ボルテックス・ジェネレータの設計最適化

研究背景 (1/2)

Vortex Generator (VG)

- ▶ 境界層厚さと同程度の高さ
- 擾乱(乱気流、突風など)によって 発生する境界層剥離(衝撃失速) を防止し、翼の振動を抑制
- > 空気抵抗は増大し、燃費が悪化

研究背景 (2/2)

Fine mesh

▶ 現在も経験則に基づく

VGは翼弦長の 2 [%] 程度の大きさ
→ VGと翼ではスケールが大きく異なる

<u>実験</u>

▶ 翼模型にさらに微小なVGを取り付け

<u>数値解析</u>

微小な流体現象を解像できる細かな格子

<u>過去の研究</u>

- ➤ 平板上のVGに関するパラメトリック・スタディ (Bur et al.)
- ➢ 三次元翼上のVGのRANS解析 (Huang et al.)
- ➢ 遷音速吸気口でのVG最適化 (Lee et al.)

研究目的・流れ

<u>衝撃失速の緩和に向けて、CFDに基づき</u> <u>VG配置を最適化、VGの設計規則を特定する</u>

1. <u>CFD解析の妥当性評価</u>

SC(2)-0518 翼型

- ▶ 乱流モデル検討
- ▶ JAXAによる風洞試験(WTT)結果と比較

2. <u>最適化問題定義に向けたパラメトリックスタディ</u>

NASA CRM 断面翼型(CRM2D翼型)

> 高さ・位置・間隔の影響

3. 逐次近似多目的最適化・データマイニング

NASA CRM 断面翼型(CRM2D翼型)

- ➢ 多目的最適化問題定義
- データマイニングに基づく多目的設計探査
- ▶ 応答曲面の精度改善

CFD解析の妥当性評価(乱流モデル検討)

乱流モデル

- ① Spalart-Allmaras model without f_{t2} term (SA-noft2) (noft2: B. Aupoix, and P. R. Spalart, 2003)
- ② SA-noft2 with rotation correction (SA-noft2-R) (J. Dacles-Mariani et al, 1995)
- ③ SA-noft2 with nonlinear Reynolds-stress tensor (SA-noft2-N) (P. R. Spalart, 2000)
- (4) Menter's k- ω shear stress transport model with Vorticity Source Term (SST-V) (F. R. Menter, 1992)
- (5) Menter's k- ω shear stress transport model 2003 (SST-2003) (F. R. Menter et al, 2003)

渦度・ひずみ速度の影響 (α = 0 [deg])

ヘリシティ密度: *h*_d ***** *h*_d **=** *u*・*o*

- ▶ ひずみ速度を用いた乱流モデルでは、渦度を用いたものに比べて渦の減衰を抑制できる
- ➢ SAとSA-Nに大きな差は見られず、非等方性の効果は確認できない

風洞試験との比較(乱流モデルの影響)

<u>SA, SA-R</u>

▶ 実験値と良い一致

<u>SA-N</u>

▶ 実験値にみられる C_pの段差が存在しない

<u>SST, SST-2003</u>

▶ 実験値よりも顕著な段差

風洞試験との比較(VG間隔の影響)

<u>VG間隔の影響</u>

- ▶ CFD:数値粘性による剥離の過小評価
- ➢ WTT:風洞の二次元性が保たれていない

パラメトリックスタディ

Re	5×10 ⁶				
М	0.725				
α [deg]	4 - 7				

t / h	0.12
δ_{BL} / c	0.004

No.	モデル名	高さ h / c	アスペクト比 <i>l / h</i>	位置 x _{vG} /c	角度 α _{vG} [deg]	比間隔 <i>∆ / h</i>	総節点数 [万点]
1	Baseline	0.006	4	0.20	20	10	389
2	Quad-spacing	0.006	4	0.20	20	40	1328
3	Quad-upstream	0.006	4	0.15	20	40	1328
4	Double-height	0.012	4	0.20	20	20	1505
5	Without-VG	-	-	-	-	-	328

間隔・位置・高さの影響

<u>間隔</u>

- **Baseline**: 衝撃波の後退により C_L が大幅に増加(バフェット発生を遅延)
- Quad-spacing: 衝撃波後流の C_p が低下することで C_L が増加

位置

Quad-upstream: 渦の減衰により、Quad-spacingよりも僅かに C_L が低下

<u>高さ</u> ▶ Double-height: Quad-spacing よりも渦が強まり C_L は増加、C_pの低下範囲が変化

VG間の相互作用

最適化問題(設計変数・制約条件)

角度

位置

間隔

2. 長さ

3.

4.

5.

 $\begin{array}{c} 0.004 \leq h/c \leq 0.012 \\ 0.004 \leq l/c \leq 0.072 \\ 10^{\circ} \leq \alpha_{VG} \leq 30^{\circ} \\ 0.15 \leq x_{VG}/c \leq 0.30 \\ 0.02 \leq \Delta/c \leq 0.36 \end{array}$

制約条件

- .アスペクト比 $1 \le l/h \le 8$
- 2. 間隔・高さ比 $5 \le \Delta/h \le 50$

最適化問題(目的関数)

応答曲面法を用いた最適化手順

Kriging モデル

<u>大域モデル</u>

- ➢ Ordinary Kriging (OK): 一定值
- RBF/Kriging-hybrid (RK): RBF

<u>局所偏差</u>

▶ 重み付きガウス関数の重ね合わせ Corr[Z(xⁱ), Z(x^j)] = ∏^m_k exp(-θ_k |xⁱ_k - x^j_k|²)

データマイニング手法

<u>自己組織化マップ(Self-organizing map: SOM)</u>

- ▶ 二層型のニューラルネットワーク
- ▶ 多次元データを二次元のマップに射影
- ▶ 変量(設計変数や目的関数)の相関を定性的に評価

最適化結果

目的関数に対するSOM

非劣解を5つのクラスターに分割

- 1. *L/D* が大きく、*C_L*, *X_{sep}* が小さい解
- 2. $L/D, X_{sep}$ が大き ζ, C_L が小さい解
- 3. バランズのとれた解
- 4. *C_L* が大きく、*L/D* が小さい解
- 5. C_L が大きく、 X_{sep} が小さい解

L/Dの大きな解(クラスター1)

10

46 0.000019

 C_{I} の大きな解(クラスター4,5)

課題:応答曲面の近似精度

21/16

座標変換付き Kriging モデル

<u>Krigingモデル</u>

▶ ガウス関数の重ね合わせで関数を近似
 ▶ 各設計変数方向に異なる重み係数θ_k
 Corr[Z(x), Z(xⁱ)] = ∏ exp(-θ_k |x_k - xⁱ_k|²)

設計変数に座標変換を施し、 重み係数の作用する方向を修正

目的関数の変化に沿った座標を見つけ出す (尤度関数を最大化するように座標変換) $Ln(\mathbf{\theta}, \phi) = -\frac{n}{2}\ln(\hat{\sigma}^2) - \frac{1}{2}\ln(|\mathbf{R}|)$

回転(_mC₂通りの平面内)

[1	0	0	0	$\int \cos \phi_2$	0	$-\sin\phi_2$	0	$\cos\phi_1$	$-\sin\phi_1$	0	0
0	1	0	0	0	1	0	0	$\sin \phi_1$	$\cos\phi_1$	0	0
0	0	$\cos\phi_6$	$-\sin\phi_6$	 $\sin \phi_2$	0	$\cos\phi_2$	0	0	0	1	0
0	0	$\sin \phi_6$	$\cos\phi_6$	0	0	0	1	0	0	0	1

設計変数の座標変換を施した Kriging モデル

23/16

まとめ

複数の乱流モデルによる解析結果と風洞試験結果を比較

▶ SA-noft2-R により、バフェット発生前ならば妥当な数値解析が可能

VG設計パラメータのパラメトリックスタディを実施

VG間隔に依存して失速特性が大きく異なり、バフェットの発生原因に応じて適切な間隔が 変化することが判明

逐次近似多目的最適化・データマイニングを実施

▶ 最適化によって得た非劣解をSOMを用いて分類し、目的に応じて特徴的な設計パラメータを抽出

今後の課題

- ▶ 座標変換付きKrigingモデルの開発による、複雑な関数への近似精度向上
- ▶ サンプル点の追加によるデータマイニング精度向上

ご清聴ありがとうございました