設計と運用に活かすデータ同化研究会 2024/02/22@名古屋大学宇宙地球環境研究所

- 1. 船舶CFDにおけるデータ同化の必要性
- 2. パラメター推定用データ同化システムの開発
- 3. テストケース
- 4. 2次元翼周りデータ同化結果の検証と考察
- 5. 3次元船体周り流れへの適用
- 6. まとめ

謝辞: 本研究の一部はJSPS科研費課題番号"22K04567"の 助成を受けたものです。

<u>船舶CFDにおけるデータ同化の必要性</u>

写真引用:https://www.namura.co.jp/ja/product/ship/ship_list/bulkcarrier.html

■ 船舶における「省エネ5%」の効果

- 50,000トンの小麦を米西海岸積み神戸で揚げる
- 船を日本で用船開始、西海岸まで空船で航海

用船料一E	ĺ		USD10,000/日
船の燃料使	「用量		32 トン/日
燃料価格	fuel oil		USD300/トン
港費		米国西海岸	USD180,000/港
		神戸	USD100,000/港
日本/米西	海岸(4585 マイル)/14.7 ノット	- 空船航海日数	13日
米西海岸/	神戸(4585 マイル)/14.0 ノット	- 満載航海日数	13.65 日
積港			5日
神戸港			8日
<u>用船料計</u> <u>燃料計</u> 港費用	USD10,000 × (13 日+13.65 USD300 × 32トン × (13 USD180,000 + USD100,000	日+5日+8日)= 日 +13.65日)= =	USD396,500 (42pct) USD255,840 (27pct) USD280,000 (30pct)
総費用			USD932,340 (100pct)
USD932,34	0 / 50,000トン = USD1	8.65	
·省エネ1ト	ン(燃料代300ドル/トンのセー	ブ)は船価1MILト	バルに相当

・燃料高騰時の600ドル/トンは船価 2MILドル以上に相当

所 出典:不定期船バルクの世界 (2015.03. 国土交通省)

設計と運用に活かすデータ同化研究会

 ▶ 1日の燃料代は、
 \$300x32=\$9,600~140万円/day
 ▶ 流力性能改善により、5%の省 エネを達成出来たとする。
 ▶ 1日当たり、燃料代は
 \$300x32x0.05=\$480/day節約。
 ▶ 26.65日航海すれば、燃料代は 一航海totalで、

\$480x26.65=**\$12,792~190**万円節 約。

- ▶ 1年に7航海すると仮定すれば、 \$480x26.65x7=\$89,544~1300万円 節約。
- ▶ 為替レート・燃料価格次第では もっと…

3

1. 船舶CFDにおけるデータ同化の必要性

■ 船舶の流力性能設計

写真の出典: https://www.jmuc.co.jp/products/container/ https://www.monohakobi.com/ja/r_and_d/esg_activitity_support/energy_saving_devices/

船首部での造波現象は、一般的 には粘性影響が小さい。 →設計現場では、ポテンシャル 理論が使われることも多い。 (但し、砕波などの強非線形現 象の解析にはCFD計算が必要)

海上技術安全研究

船尾では境界層が発達→粘性抵抗が支配的。 →船尾形状・推進器・付加物設計には、船尾流 れの情報が必要不可欠。 →設計ツールとして、粘性CFD計算を使用。期待 されていることの1つは、流場の精度良い推定。 →船舶分野でCFDは、水槽試験(航空機分野での 風洞実験)、実船計測と相互補完的に利用。4 1 かすデータ同化研究会 2024/02/22@名古屋大学宇宙地球環境研究所 1 船舶CFDにおけるデータ同化の必要性

■ 船尾における流れの剥離

- 鈴木他 (1993)
- 右舷側船尾を、水中斜め下から見たイメージ
- 船尾プロペラ面付近におけるビルジ渦(Bilge vortices)のCFDによる 解像がkey

■ 主流は、*k* – ω SST, EASM。乱流モデルの持つ性能を、より発揮することができれば、更に高精度な流場推定が可能なのでは?

設計と運用に活かすデータ同化研究会 2024/02/22@名古屋大学宇宙地球環境研究所 船舶CFDにおけるデータ同化の必 ■ 船舶CFDにおける乱流モデルパラメター変更の一例 Hino et al. (2022) ■ 肥大船の船尾流れを対象 1.20 1.20 CRC 12.0 -120 Generalized k-ω "like" model 0 02040808 1 12 CFD EFD CFD EFD CFD EFD -0.01 ■ モデル定数に空間分布を与 -0.02 -0.02 211-00 1 -0.03 えることで、船尾流れの再 -0.04 -0.04 -0.05 -0.05 現性が改善。 -0.0 YIL ■ 与え方はad-hocに決定。 Fig. 10 Comparison of x-directional velocity (u/U) distributions of the modified model (Case 1) with the experimental data (EFD) at $x/L_{PP} =$ 0.9625, 0.9843 and 1.0 $C_{\rm s}$: separation parameter 0.80 0.85 1.55 1.05 C_{RC} : rotation/curvature correction 0.9625

Fig. 12 Comparison of x-directional velocity (u/U) distributions of the modified k- ω model (Case 3) with the experimental data (EFD) at $x/L_{PP} = 0.9625, 0.9843$ and 1.0

1. 船舶CFDにおけるデータ同化の必要性

■ 研究目的

データ同化により、船舶CFD計算に適した乱流モデル パラメターを推定し、船舶の流力性能評価精度を 向上させること。

■本発表の主な内容
 →2次元翼後縁の剥離流れを捉えることの出来る
 k - ω SSTモデルパラメターを、実計測値を援用した
 データ同化により推定&精度検証
 →推定したパラメターで、3次元船体周り流れを推定し、
 精度を検証

機械・航空分野で多数の先行研究: Kato&Obayashi (2011, 2013), Kato et al. (2015, 2016) Misaka et al. (2019), Obayashi et al. (2021), Misaka et al. (2022) etc...

2. パラメター推定用データ同化研究会2024/02/22@名古屋大学宇宙地球環境研究所上の開発

- 海技研in-house CFDソルバー: "NAGISA"
 構造格子有限体積法(疑似圧縮)
- 乱流モデル: 1-eq/2-eq/EASM/DES/WF/low Rn,壁面粗度
- 自由表面モデル: 単相レベルセット法
- 定常/非定常計算
- -6自由度運動
- プロペラ影響:体積力/実形状
- 静的/動的重合格子

- OpenMP並列化

<u>今回の計算</u>:

- <u>k</u> ω SST(2-eq)モデル
- 粗度無し、自由表面無し - 定常計算 (時間平均流場)

2. パラメター推定用データ同化がすデータ同化研究会2024/02/22@名古屋大学宇宙地球環境研究所2024/02/22@名古屋大学宇宙地球環境研究所2024/02/22@名古屋大学宇宙地球環境研究所

■ 乱流モデル: Menter's *k* – ω SST(2-eq)モデル

,*k*,ωについての輸送方程式を<mark>2本</mark>解く。 $\frac{\partial (k,\omega)^T}{\partial t} + u_i \frac{\partial (k,\omega)^T}{\partial x_i}$
 ・ 壁近傍ではω方程式、それ以外ではε方
 程式を解く。 $= Prod_{k,\omega} + Diff_{k,\omega}$ 関数F₁, F₂の導入により、 k - ω/k - ε + $Dest_{k,\omega}$ + $CrossDiff_{\cdot,\omega}$ をblendingし、両者の利点を活かす。 k方程式の右辺項 ● 圧力勾配影響を受ける流れに適する。 $Prod_{k} = \tau_{ij} \frac{\partial u_{i}}{\partial x_{i}}$ $\phi = F_1\phi_1 + (1-F_1)\phi_2$ $Dest_k = -\beta^* \omega k$ $Diff_{k} = \frac{\partial}{\partial x_{i}} \left[(v + \sigma_{k} v_{t}) \frac{\partial k}{\partial r_{i}} \right]$ ϕ_1 としてblending functionに入る係数 $\sigma_{k1} = 0.85, \sigma_{\omega 1} = 0.5, \beta_1 = 0.075$ $\gamma_1 = \frac{\beta_1}{\beta^*} - \frac{\sigma_{\omega 1} \kappa^2}{\sqrt{\beta^*}}, \beta^* = 0.09, \kappa = 0.41$ ω方程式の右辺項 k-ω model $Prod_{\omega} = \frac{\gamma}{v_t}$ $Dest._{\omega} = -\beta \omega^2$ ϕ_2 としてblending functionに入る係数 $Diff_{\cdot\omega} = \frac{\partial}{\partial x_i} \left[(\nu + \sigma_{\omega} \nu_t) \frac{\partial \omega}{\partial x_i} \right]$ $\sigma_{k2} = 1.0, \sigma_{\omega 2} = 0.856, \beta_2 = 0.0828$ $\gamma_2 = \frac{\beta_2}{\beta^*} - \frac{\sigma_{\omega 2} \kappa^2}{\sqrt{\rho^*}}, \beta^* = 0.09, \kappa = 0.41 \text{ k-ϵ model}$ $CrossDiff_{\omega} = 2(1 - F_1)\sigma_{\omega 2} \frac{1}{\omega} \frac{\partial k}{\partial x_i} \frac{\partial \omega}{\partial x_i}$ 10

2024/02/22@名古屋大学宇宙地球環境研究所2024/02/22@名古屋大学宇宙地球環境研究所2024/02/22@名古屋大学宇宙地球環境研究所2024/02/22@名古屋大学宇宙地球環境研究所2024/02/22@名古屋大学宇宙地球環境研究所

$$\frac{\partial (k,\omega)^{T}}{\partial t} + u_{i} \frac{\partial (k,\omega)^{T}}{\partial x_{i}} = Prod_{\cdot k,\omega} + Diff_{\cdot k,\omega} + Dest_{\cdot k,\omega} + CrossDiff_{\cdot \omega}$$

<u>F₁, F₂およびν_t</u>

$$F_{1} = \tanh(arg_{1}^{4})$$

$$arg_{1} = \min\left[\max\left(\frac{\sqrt{k}}{0.09\omega y}, \frac{500\nu}{y^{2}\omega}\right), \frac{4\sigma_{\omega 2}k}{CD_{k\omega}}\right]$$

$$CD_{k\omega} = \max\left(2\sigma_{\omega 2}, \frac{1}{\omega}\frac{\partial k}{\partial x_{j}}\frac{\partial \omega}{\partial x_{j}}, 10^{-20}\right)$$

$$\nu_{t} = \frac{a_{1}k}{\max(a_{1}\omega,\Omega F_{2})}, a_{1} = 0.31$$

$$F_{2} = \tanh(arg_{2}^{2})$$

$$arg_{2} = \max\left(\frac{2\sqrt{k}}{0.09\omega y}, \frac{500\nu}{y^{2}\omega}\right)$$

• 関数 F_1 , F_2 の導入により、 $k - \omega/k - \varepsilon$ をblendingし、両者の利点を活かす。

$$\phi = F_1 \phi_1 + (1 - F_1) \phi_2$$

Ω: 渦度強さ(magnitude)、y: 壁面までの最小距離

運用に活かすデータ同化研究会 2024/02/22@名古屋大学宇宙地球環境 2. パラメター推定用データ同化ジスデムの開 ■ 乱流モデル:Menter's k – ω SST(2-eq)モデル ● データ同化対象とするパラメター $\frac{\partial (k,\omega)^T}{\partial t} + u_i \frac{\partial (k,\omega)^T}{\partial x_i}$ $\rightarrow a_1, \beta_1, \beta_2, \sigma_{\omega 1}, \sigma_{\omega 2}$ $= Prod_{k,\omega} + Diff_{k,\omega}$ • $\kappa, \beta^* (= C_u \text{ in } k - \varepsilon)$ は外す。 →どちらも壁乱流における対数則をベース + $Dest_{k,\omega}$ + $CrossDiff_{\cdot\omega}$ に求まる定数だから。 <u>F₁,F₂およびv_t</u> $F_1 = \tanh(arg_1^4)$ $\phi = F_1 \phi_1 + (1 - F_1) \phi_2$ $arg_{1} = min \left[max \left(\frac{\sqrt{k}}{0.09\omega y}, \frac{500\nu}{\nu^{2}\omega} \right), \frac{4\sigma_{\omega 2}k}{CD_{\nu \omega}} \right]$ ϕ_1 としてblending functionに入る係数 $\sigma_{k1} = 0.85, \sigma_{\omega 1} = 0.5, \beta_1 = 0.075$ $CD_{k\omega} = max \left(2\sigma_{\omega 2} \frac{1}{\omega} \frac{\partial k}{\partial x_i} \frac{\partial \omega}{\partial x_i}, 10^{-20} \right)$ $\gamma_1 = \frac{\beta_1}{\beta^*} - \frac{\sigma_{\omega 1} \kappa^2}{\sqrt{\beta^*}}, \beta^* = 0.09, \kappa = 0.41$ k-ω model $v_t = \frac{a_1 k}{max(a_1 \omega, \Omega F_2)}, \ a_1 = 0.31$ <u>
ゆっとしてblending functionに入る係数</u> $F_2 = \tanh(arg_2^2)$ $\sigma_{k2} = 1.0, \sigma_{\omega 2} = 0.856, \beta_2 = 0.0828$ $\gamma_2 = \frac{\beta_2}{\beta^*} - \frac{\sigma_{\omega 2} \kappa^2}{\sqrt{\beta^*}}, \beta^* = 0.09, \kappa = 0.41$ $arg_2 = max\left(\frac{2\sqrt{k}}{0.09\omega v}, \frac{500v}{v^2\omega}\right)$ k-ε model 12 **Ω**: 渦度強さ(magnitude)、y: 壁面までの最小距離

■ Ensemble Kalman filter: EnKF (図は三坂 (2021) より抜粋)

- 予測値の確率分布を、アンサンブルで近似
- 共分散行列の時間発展も、アンサンブルで近似
- 状態遷移行列を<mark>陽に定義する必要がない。</mark> →<mark>非線形</mark>のシステムモデルがそのまま使用可能。

観測値と同化前の結果との差

Ensemble Kalman filter: EnKF

$$\vec{x}_{t|t} = \vec{x}_{t|t-1} + K_t \left(\vec{y}_t^{obs} - H_t \vec{x}_{t|t-1} + \vec{w}_t \right)$$
$$V_{t|t} = (I - K_t) V_{t|t-1}$$

計測点数<アンサンブルメンバー数の場合: $K_t = V_{t|t-1}H_t^T (H_t V_{t|t-1}H_t^T + R_t)^{-1}$

計測点数>アンサンブルメンバー数の場合: $K_t = \tilde{E}_{t|t-1} \left[I + \left(H_t \tilde{E}_{t|t-1} \right)^T R_t^{-1} \left(H_t \tilde{E}_{t|t-1} \right) \right]^{-1} \tilde{E}_{t|t-1}^T H_t^T R_t^{-1}$

 $\tilde{E}_{t|t-1}$: アンサンブル摂動を、メンバー数だけ列方向に並べた行列 H_t : 観測演算子。セルID(i,j,k)から陽に定義。

<u>システムモデル</u>:NAGISAにより数値的に解くRaNS方程式

アンサンブルメンバー:

データ同化の対象となる乱流モデルパラメターを、複数個サンプリングした集合(初 期値はラテン超方格法により決定)。およびそのモデルパラメターを用いたRaNS計算 で得た流場データの集合。

<u>アンサンブルメンバーの時間発展</u>: 各メンバーを、流場が収束するまでNAGISA(=システムモデル)により計算すること。

観測モデル:

線形(=定常観測であり、1回計測した実験値をfiltering中は変えずに使用。)

Bit と運用に活かすデータ同化研究会
 2024/02/22@名古屋大学宇宙地球環境研究所
 2 パラメター推定用データ同化システムの開発

■ EnKFとCFDコード(システムモデル)の統合

設計と運用に活かすデータ同化研究会 2024/02/22@名古屋大学宇宙地球環境研究所 <u>2. パラメター推定用データ同化ジステムの</u>

40

100

設計と運用に活かすデータ同化研究会 2024/02/22@名古屋大学宇宙地球環境研究所

テストケース

設計と運用に活かすデータ同化研究会 2024/02/22@名古屋大学宇宙地球環境研究所

<u>3. テストケース</u>

■ 2次元NACA4412のCFD計算:基準パラメターでの精度検証

 基準パラメターで、 主流方向流速(u)は、 精度良く推定。
 上下方向流速(v)は、 後縁付近(x/c>0.8)に おける壁近傍および 後流での精度が不足。

 Separation bubbleの サイズも、計算結果 は実験に比べやや小 さい。

EnKFによるk – ω SSTモデルのパラメター推定

テストケース

3

	Case	データ同化に 用いる計測値	初期アンサンブルメンバー生成範囲				
	1	и, v	$0.248 \le a_1 \le 0.372 \text{ (nominal: } a_1 = 0.31\text{)}$				
	2	u	$0.06 \le \beta_1 \le 0.09 \text{ (nominal: } \beta_1 = 0.075)$ $0.0786 \le \beta_2 \le 0.0869 \text{ (nominal: } \beta_2 = 0.0828)$				
	3	ν	$0.0700 \le p_2 \le 0.0009 \text{ (nominal: } p_1 = 0.0828)$ $0.45 \le \sigma_{\omega 1} \le 0.55 \text{ (nominal: } \sigma_{\omega 1} = 0.5)$ $0.770 \le \sigma_{\omega 2} \le 0.942 \text{ (nominal: } \sigma_{\omega 2} = 0.856)$				
 ● アンサンブルメンバー数:30 ● フィルタリング回数:100 ● 観測値に与えるノイズ: N(0,1.0E - 6)の白色雑音 ● 共分散膨張:与えない ●局所化:行わない 							
$\begin{split} N_{d}: 計測データ数\\ N_{ens}: アンサンブルメンバー数\\ \bar{\vec{x}}_{t t-1}: \ \mathcal{P} \rangle \forall t \rangle \forall t \rangle^{2} \\ \vec{\vec{x}}_{t t-1}: \ \mathcal{P} \rangle \forall t \rangle \forall t \rangle \forall t \rangle^{2} \\ \vec{\vec{x}}_{t t-1}: \ \mathcal{P} \rangle \forall t \rangle \forall t \rangle \forall t \rangle \forall t \rangle & spred = \frac{1}{N_{ens}} \sqrt{\sum_{j=1}^{N_{ens}} (\vec{\vec{x}}_{t t-1} _{j} - \vec{\vec{x}}_{t t-1})^{2}} \\ spred = \frac{1}{N_{ens}} \sqrt{\sum_{j=1}^{N_{ens}} (\vec{\vec{x}}_{t t-1} _{j} - \vec{\vec{x}}_{t t-1})^{2}} \\ \end{bmatrix}$							

4. データ同化結果の検証と考察

■ パラメターのフィルタリング履歴

設計と運用に活かすデータ同化研究会 2024/02/22@名古屋大学宇宙地球環境研究所

4. データ同化結果の検証と考察

■ パラメターのアンサンブルスプレッド

2024/02/22@名古屋大学宇宙地球環境研究所 データ同化結果の検証と考察

■ データ同化前後での流場の再現性:u(主流方向流速)

同化

4. データ同化結果の検証と考察

■ データ同化前後での流場の再現性:流線およびu contour

設計と運用に活かすデータ同化研究会

<u>4. データ同化結果の検証と考察</u>

■ データ同化前後での流場の再現性:v(鉛直方向流速)

4. データ同化結果の検証と考察

■ データ同化前後での流場の再現性:v contour

<u>4. データ同化結果の検証と考察</u>

■ データ同化前後での流場のRMSEとモデルパラメター

	Case	RMSE (w.r.t. Exp.)	∆RMSE(%original)
同化前·	→ original	4.59e-4	
	DA, UV	4.27E-4	-6.91%
同化後 -	DA, U	4.42e-4	-3.66%
	DA, V	7.05e-4	+53.6%

全流場の spread(u,v)も O(1e-4)以下に なっている。

	coeffs	<i>a</i> ₁	eta_1	β_2	$\sigma_{\omega 1}$	$\sigma_{\omega 2}$
同化前一	original	0.31	0.075	0.0828	0.5	0.856
	DA, UV	0.41	0.16	0.0486	0.6	0.605
同化後 -	DA, U	0.41	0.17	0.0749	0.6	0.892
	DA, V	0.42	0.11	0.0658	0.09	0.669

4. データ同化結果の検証と考察

■ 3次元船体周り流れに適用する前に

coeffs	<i>a</i> ₁	β_1	β_2	$\sigma_{\omega 1}$	$\sigma_{\omega 2}$
original	0.31	0.075	0.0828	0.5	0.856
DA, UV	0.41	0.16	0.0486	0.6	0.605

設計と運用に活かすデータ同化研究会

パラメターは、パラメターおよび流場と共分散行列V_{t|t-1}を通じて変化しているので、下記のような恣意的な選択は良くないが…

- a₁は、摩擦抵抗係数への影響が非常に大きい&Bradshaw定数として0.3 が適するとの実験結果多数→originalの値を採用。
- ・ 壁近傍から生じるため剥離現象の再現にはω方程式の係数が重要
 ・ β₂およびσ_{ω2} (壁から離れた乱流が発達する領域の定数)には
 originalの値を採用。
- σ_{ω_1} は主に、壁近傍での ω 拡散に関わるためデータ同化後の値を用いうるが、数値実験の結果originalの値を採用。

β₁ = 0.16(壁近傍でのωの生成項&崩壊項に作用、剥離現象と関係が強いと考えられる)のみを、データ同化結果として3次元船体計算に使用。
 ²⁹

<u>4. データ同化結果の検証と考察</u>

■ "β₁=0.16"の2次元平板流れへの影響

*C_{fom}*に対するβ₁=0.16の影響は-0.86%original
 船体抵抗の摩擦成分予測への影響は限定的(後述)

<u>5.3次元船体周り流れへの適用</u>

()	Shin nama	P.o.	Daviaa	Validation data for the	Poforonco
Св	Ship hame	Λn	present study	Reference	
0.8098	KVLCC2	4.6E+06	Hot wire anemometry	$u, v, w, k, \mathrm{RS}^*$	Lee et al. (2003)
0.8580	JBC	7.46E+06	PIV	<i>u, v, w</i>	CFDWS2015
0.8713	82BC	8.26E+06	5-hole pitot tube	и, v, w	In-house Exp.
0.7953	33CT	7.45E+06	5-hole pitot tube	и, v, w	In-house Exp.
र स लोग जर	*		— <u>—</u>		

* Reynolds stress (five components except v'w')

- "β1=0.16"は、originalに比べ、uのhook shape再現性を改善。
- ●限界流線を見る限り、どの乱流モデルでも剥離はSS.0.5~SS.1の 間で生じている。(目立った違いはない)
 → "β1=0.16"は、剥離した後の流れに効いている。

<u>5.3次元船体周り流れへの通用</u>

■ KVLCC2: プロペラ面TKE, u'u'分布

設計と運用に活かすデータ同化研究会

 "β1=0.16"は、originalおよびEASMに比べ、TKE分布を改善。
 TKE最大値は、計測値/EASMに比べ1.4倍大きい。
 >実はoriginalも、TKE最大値は計測値/EASMに比べ1.2倍大きい。
 >これは、v'v', w'w'か過大評価されているため。しかしこれらの 過大評価は、TKE分布の改善にも繋がってはいる…(次スライド) 海上技術安全研究所 <u>5.3次元船体局り流れへの適用</u>

■ KVLCC2: プロペラ面レイノルズ応力(v'v',w'w')分布

● original,"β1=0.16"は、EASMに比べ、v'v', w'w'を大きめに推定。 →これが、 original,"β1=0.16"がTKEを計測値に比べ大きめに推定する 理由。

→β1=0.16が、RS normal componentsに特段悪影響を与えているわけで

<u>5.3次元船体周り流れへの通用</u>

■ KVLCC2: プロペラ面レイノルズ応力(u'v',u'w')分布

- "β1=0.16"は、EASMに比べ、u'v', u'w'を計測値に近く推定。(分布、 最大値)
- 少なくともKVLCC2については、乱流の非等方性影響は、RSの交差 成分に対しては小さい。

 ● "β1=0.16"は、original/EASMに比べ、uのhook shape再現性を改善。
 ● KVLCC2同様、限界流線を見る限りどの乱流モデルでも剥離は SS.0.5~SS.1の間で生じている。(目立った違いはない)
 →やはり"β1=0.16"は、剥離した後の流れに効いている。

 "β1=0.16"のみならず、original/EASMは、uの低速域を過大評価(= 遅い領域を広めに推定する傾向)。

- 33CTは、他3隻に比べビルジ渦が小さめ。
- "β1=0.16"は、originalに比べ、uの低速域を若干計測結果に近く 推定(EASMとほぼ同等)。
- "β1=0.16"は、流れの剥離を数値的に促進したりはしない。(痩せ 型船にも悪影響は及ぼさないだろう。但し要検証。)

<u>6. まとめ</u>

■ 2次元NACA4412(迎角13.87deg、後縁に剥離有り)における、 $k - \omega$ SSTモデルのパラメター $a_1, \beta_1, \beta_2, \sigma_{\omega 1}, \sigma_{\omega 2}$ 推定を行うデー タ同化問題を設定。 ■ データ同化に用いる計測値に、実計測値(流速U,V)を採用。 ■ EnKFと"NAGISA"を統合したデータ同化システムを、実計測値 を用いたデータ同化問題に適用。 ■ U,U&Vを用いた際、データ同化成功。 ■ データ同化の結果から、β₁ = 0.16を3次元船体計算に使用。 →要目の異なる4隻の肥大船の船尾流場(主流速分布等)を、 original k-ω SSTに比べ精度よく再現。全抵抗係数の変化も 0.7%以内。EASM modelと比べても、遜色のない結果。 →3次元船体(肥大船)計算に適したk-ω SSTモデル パラメターβ1が、データ同化を援用して推定できた。 →パラメター選択が2D→3Dで恣意的。もっとstochasticに 出来ると良い。(人の手が入らないように)

<u>Appendix: Bradshaw定数</u>

Harsha and Lee (1970, AIAA J. Vol. 8. No. 8, pp. 1508-1510)

Fig. 3 Distribution of the observed values of the parameter a_1 for the data surveyed.

設計と運用に活かすデータ同化研究会 2024/02/22@名古屋大学宇宙地球環境研究所

Appendix: Ensemble spread of u&v

■ DA result with U&V

設計と運用に活かすデータ同化研究会 2024/02/22@名古屋大学宇宙地球環境研究所

Appendix: Ensemble spread of u&v

■ DA result with U

DA result with V

<u>Appendix:</u>限界流線

■ KVLCC2(タンカー)

設計と運用に活かすデータ同化研究会 2024/02/22@名古屋大学宇宙地球環境研究所

<u>Appendix:</u>限界流線

■ JBC(バルクキャリア)

