# 1DCAEの考え方、適用事例、課題

東京大学 大富浩一

# 自己紹介(企業での35年9か月)

| 1980 | 1985 | 1990 | 1995 | 2000 | 2005 | 2010 | 2015 |
|------|------|------|------|------|------|------|------|
|      |      |      |      |      |      |      |      |

<u>開発 (プロジェクト)</u>

| 分離機 | 原子力 | 宇宙<br>リニア | PC, 携帯電話,<br>半導体等 | 宇宙<br>(NASA/ISS) | 家電<br>医用機器 |
|-----|-----|-----------|-------------------|------------------|------------|
|-----|-----|-----------|-------------------|------------------|------------|

| 研究 | 流体関連<br>振動 | VR | 設計工学<br>(全社活動) | 音のデザイン<br>1DCAE |
|----|------------|----|----------------|-----------------|
|----|------------|----|----------------|-----------------|

| 管理 |
|----|
|----|

## 1DCAEの提案:2009年

#### 設計情報の次元の推移

 $0D \rightarrow 1D \rightarrow 2D \rightarrow 3D \rightarrow 4D$ 





## 1DCAEとは?!

『1DCAEとは上流段階から適用可能な設計支援の考え方、手 法、ツールで、1Dは特に一次元であることを意味しているわけでは なく、物事の本質を的確に捉え、見通しの良い形式でシンプルに 表現することを意味する。1DCAEにより、設計の上流から下流ま でCAEで評価可能となる。ここで言うCAEはいわゆるシミュレーショ ンだけでなく、本来のComputer-Aided Engineering を意 味する。1DCAEでは、製品設計を行うに当たって(形を作る前 に)機能ベースで対象とする製品(システム)全体を表現し、評 価解析可能とすることにより、製品開発上流段階での全体適正 設計を可能とする。全体適正設計を受けて(この結果を入力とし て)個別設計を実施、個別設計の結果を全体適正設計に戻し システム検証を行う。』



#### 個別最適設計

詳細を設計

#### 3D:構造は分かるが機能は見えない



1D:構造は分からないが機能は見える

## 1DCAEの効果

上流設計の実現:設計上流段階から適用可能なため、広い設計空間を対象とすることができ、新たな価値の創造につながる。

 システム全体の可視化:メカ、エレキ、ソフトといった分野を横断した設計仕様の策定が可能となる。これは分野単独の部分最適から、 分野横断の全体最適を可能とし、ムリ、ムダを排除できる。また、シス テム全体での抜けを防止でき、品質向上につながる。

• **エンジニアの育成**: 1DCAEは物理現象をちゃんと理解しているこ とにより最大の効果を発揮し、考えている対象製品イメージを機能に 展開する能力が要求される。1DCAEはエンジニアに学習を能動的に 働きかける重要な効果がある。





## 昔の話ではありますが























図2. ABWR 1/5 モデル試験装置 ポンプ2台を含む実機のセクタモデル で,かつ,構造物,ポンプを実機と同じ形状でスケールを 1/5 にしてある。

ABWR 1/5-scale model test facility

#### 最終的には実験で確認 (モデル実験⇒実機大実験)



図3. ABWR 1/5 モデル 試験結果 ポンプ吐出流 を受ける制御棒駆動機構 ハウジング表面の変動 圧力である。これから 流体加振力が評価できる。 ABWR 1/5-scale model test results 23

# 比較的最近の話ですが

## セントリフュージ・プロジェクト



#### 国際宇宙ステーション International Space Station(ISS)

重力発生装置搭載モジュール Centrifuge Accommodation Module(CAM)



セントリフュージ・ロータ(CR):東芝開発 回転により人工重力を発生(~2G) 重力が生物に与える影響を調査



## **Structure of CR**





### Structure

#### FEM & Test



## Flexible Structure

FEM & ADAMS/Flex



Weight saving is one of the most important issues in space equipment design. Therefore, the structure should be treated as an elastic body. The 3-D FEM analysis is separately done and the result is introduced into the integrated analysis model by using ADAMS/Flex, which is a function of ADAMS.





![](_page_26_Picture_0.jpeg)

Control

Matlab & ADAMS/Controls

![](_page_26_Figure_3.jpeg)

$$\begin{split} M_{g}\ddot{x}_{g} + C_{Rtx}\dot{x}_{g} - C_{Rtx}\dot{x}_{1} - C_{Rtx}L\dot{\phi}_{y_{g}} + K_{Rtx}x_{g} - K_{Rtx}x_{1} - K_{Rtx}L\phi_{y_{g}} = d_{x_{g}} \\ M_{1}\ddot{x}_{1} - C_{Rtx}\dot{x}_{g} + (C_{Rtx} + C_{Xtx})\dot{x}_{1} - C_{Xtx}\dot{x}_{2} + C_{Rtx}L\dot{\phi}_{y_{g}} \\ - K_{Rtx}x_{g} + (K_{Rtx} + K_{Xtx})x_{1} - K_{Xtx}x_{2} + K_{Rtx}L\phi_{y_{g}} = u_{Xtx} + h_{Xtx} + d_{x_{1}} \\ M_{2}\ddot{x}_{2} - C_{Xtx}\dot{x}_{1} + (C_{Xtx} + C_{Ytx})\dot{x}_{2} - C_{Ytx}\dot{x}_{3} - K_{Xtx}x_{2} + (K_{Xtx} + K_{Ytx})x_{2} - K_{Ytx}x_{3} = -u_{Xtx} - h_{Xtx} + h_{Ytx} + d_{x_{2}} \\ M_{3}\ddot{x}_{3} - C_{Ytx}\dot{x}_{2} + (C_{Ytx} + C_{Ztx})\dot{x}_{3} - K_{Ytx}x_{2} + (K_{Ytx} + K_{Ztx})x_{3} = -h_{Ytx} + d_{x_{2}} \end{split}$$

controller  $\begin{bmatrix} A & B \\ \hline C & D \end{bmatrix}$ 

Basic control evaluation

State space expression of

![](_page_26_Figure_6.jpeg)

![](_page_26_Figure_7.jpeg)

Block diagram by Simulink

![](_page_26_Figure_9.jpeg)

#### $\bigcirc$

## V&V Procedure

![](_page_27_Figure_2.jpeg)

## **1DCAE** for Better Design

![](_page_28_Picture_1.jpeg)

### ~医用機器のコスト最小化~

#### 1DCAEによる提案手法

![](_page_29_Figure_1.jpeg)

メカ・エレキ・ソフト統合解析

![](_page_30_Figure_1.jpeg)

#### 1D⇔3Dのデータの流れ

![](_page_31_Figure_1.jpeg)

#### 1DCAEによる提案手法

![](_page_32_Figure_1.jpeg)

## 風力発電システムの1DCAE

![](_page_33_Figure_1.jpeg)

#### 風力発電システムの1DCAEの構成図

![](_page_34_Figure_1.jpeg)

#### WIND ENERGY EXPLAINED

THEORY, DESIGN AND APPLICATION SECOND EDITION

![](_page_35_Picture_3.jpeg)

| 3 | Aerodynamics of Wind Turbines |                                                            |     |  |  |
|---|-------------------------------|------------------------------------------------------------|-----|--|--|
|   | 3.1                           | General Overview                                           | 91  |  |  |
|   | 3.2                           | One-dimensional Momentum Theory and the Betz Limit         | 92  |  |  |
|   | 3.3                           | Ideal Horizontal Axis Wind Turbine with Wake Rotation      | 96  |  |  |
|   | 3.4                           | Airfoils and General Concepts of Aerodynamics              | 101 |  |  |
|   | 3.5                           | Blade Design for Modern Wind Turbines                      | 115 |  |  |
|   | 3.6                           | Momentum Theory and Blade Element Theory                   | 117 |  |  |
|   | 3.7                           | Blade Shape for Ideal Rotor without Wake Rotation          | 121 |  |  |
|   | 3.8                           | General Rotor Blade Shape Performance Prediction           | 124 |  |  |
|   | 3.9                           | Blade Shape for Optimum Rotor with Wake Rotation           | 131 |  |  |
|   | 3.10                          | Generalized Rotor Design Procedure                         | 133 |  |  |
|   | 3.11                          | Simplified HAWT Rotor Performance Calculation Procedure    | 138 |  |  |
|   | 3.12                          | Effect of Drag and Blade Number on Optimum Performance     | 139 |  |  |
|   | 3.13                          | Computational and Aerodynamic Issues in Aerodynamic Design | 141 |  |  |
|   | 3.14                          | Aerodynamics of Vertical Axis Wind Turbines                | 145 |  |  |
|   | Refe                          | ences                                                      | 153 |  |  |

![](_page_36_Figure_0.jpeg)

飛行機ではウイングレットを利用 風車では翼端を細くするのが構造的にも有利

![](_page_36_Figure_2.jpeg)

~関西地区で始めての開催!! Modelicaの最新訳本付き!!~ 「1DCAE概念に基づくものづくり設計教育(第六弾):1DCAEが拓くものづくりの新しい世界」

企画 日本機械学会 設計工学・システム部門

開催日:2015年12月21日(月)、22日(火) 場所 :大阪大学 中之島センター 講義室301 http://www.onc.osaka-u.ac.jp/others/map/

1日目 12月21日(月)

1.10:00~12:00 「導入:1DCAEによるものづくりの革新」 東京大学 大富浩一

2.13:00~15:00 「基礎:1DCAEと機械製品における材料設計」 日立製作所 山崎美稀

3.15:00~17:00 「基礎: Modelica入門」 ニュートンワークス 広野友英

17:30- 交流会

2日目 12月22日(火)
4.9:00~12:00「演習:デライトデザインを例とした1DCAEの実践」
日立製作所 山崎美稀、大阪大学 野間ロ大、東京大学 大富浩一
5.13:00~15:00「基礎:機能(1D)から構造(3D)へ」 京都大学 西脇眞二
6.15:00~16:00「応用:1DCAEと設計手法」 大阪大学 野間ロ大

7.16:00~17:00 「展望:1DCAEが拓くものづくりの新しい世界」 東京大学 大富浩一

51