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Abstract 
 
The Kriging-based genetic algorithm is applied to 
aerodynamic design problems. The Kriging model, one 
of the response surface models, represents a relationship 
between the objective function (output) and design 
variables (input) using stochastic process. The kriging 
model drastically reduces the computational time 
required for objective function evaluation in the 
optimization (optimum searching) process. ‘Expected 
improvement (EI)’ is used as a criterion to select 
additional sample points. This makes it possible not only 
to improve the accuracy of the response surface but also 
to explore the global optimum efficiently. The functional 
analysis of variance (ANOVA) is conducted to evaluate 
the influence of each design variable and their 
interactions to the objective function. Based on the result 
of the functional ANOVA, designers can reduce the 
number of design variables by eliminating those that 
have small effect on the objective function. In this paper, 
the present method is applied to a two-dimensional 
airfoil design and the prediction of flap’s position in a 
multi-element airfoil, where the lift-to-drag ratio (L/D) is 
maximized. 
  

1. Introduction  
 
With the growth in computing power of current 
computers and the advance in technique of 
computational fluid dynamics (CFD), CFD becomes 
one of the inevitable tools in the aerodynamic 
optimization design nowadays. However, in the process 
of the optimization design, the number of objective 
function evaluations using high fidelity CFD analysis 
solver is severely limited by time and cost, even with the 
current supercomputer.  
 
One alternative is to construct a simple approximate 
model of the complicated CFD analysis solver. The 
approximate model expresses the relationship between 
the objective function (output) and the design variables 

(input) with simple equation. This model requires very 
little time to evaluate the objective function. It makes 
possible to save a lot of computation time and to explore 
more wide design space. 
 
The most widely used approximation model is 
polynomial-based model [1, 2], due to its simplicity and 
ease of use. However, this model is not suitable for 
representing multi-modalities and non-linearity that often 
appear in the aerodynamic problem.  
 
Recently, the Kriging model [3, 4], developed in the field 
of spatial statistics and geostatistics, has gained 
popularity in this field. This model predicts the value of 
the unknown point using stochastic processes. Sample 
points are interpolated with the Gaussian random 
function to estimate the trend of the stochastic processes. 
The model has a sufficient flexibility to represent the 
nonlinear and multimodal functions at the expense of 
computation time. However, the computation time to 
construct the Kriging model is still short compared to 
that of the direct CFD analysis. 
 
In this study, the genetic algorithms (GAs) are adopted as 
searching algorithm. GAs are based on the mechanism of 
natural selection and natural genes. GAs are very 
attractive to the engineering problems where 
discontinuities and multi-modalities may exist, because 
GAs do not utilize derivative information. Another merit 
of GAs is that they search the optimum point from a 
population of points, not a single point. This feature is 
very promising to multi-objective problems. However, 
GAs require many objective function evaluations, which 
may be impractical if we rely solely on the 
time-consuming high fidelity CFD analysis solver.   
The time consuming CFD analysis solver in the objective 
function evaluation process of GA is replaced with the 
Kriging model. However, it is possible to miss the global 
optimum in the searching space if we rely only on the 
prediction value of the Kriging model, because the model 
includes uncertainty at the prediction point. For the 
robust exploration of the global optimum point, both the 
prediction value and its uncertainty should be considered 
at the same time. This concept is expressed in the 
criterion ‘expected improvement (EI)’. EI indicates the 
probability of a point being optimum in the design space. 
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By selecting the best EI point as the additional sample 
point, the improvement of the model and the robust 
exploration of the global optimum can be achieved at the 
same time. 
 
Current optimization design problem treats a lot of 
design variables. Sometime the number of design 
variable is more than several hundreds. In this study, a 
variance decomposition of the model, using a functional 
analysis of variance (ANOVA) [5, 6, 7], is employed to 
evaluate the effect of each variable and their interactions 
to the objective function. Based on these results, design 
variable that does not have a significant influence to the 
objective function can be eliminated effectively. 
 

2. Kriging Model 
 
The present Kriging model expresses the unknown 
function y(x) as  

)()( xx Zy += µ  (1) 
where  is an m-dimensional vector (m design 
variables), 

x
µ is a constant global model and  

represents a local deviation from the global model. In the 
model, the local deviation at an unknown point (x) is 
expressed using stochastic processes. The sample points 
are interpolated with the Gaussian random function as 
the correlation function to estimate the trend of the 
stochastic processes. The correlation between Z  

and  is strongly related to the distance between 
the two corresponding points, x

)(xZ

)( ix
)(Z jx

i and xj. However, the 
Euclidean distance is not used, because it weighs all 
design variables equally. In the Kriging model, a special 
weighted distance is used instead.  
The distance function between the point at xi and xj is 
expressed as  
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where kθ )0( ∞≤≤ kθ is the kth element of the 
correlation vector parameter .  By using the specially 
weighted distance and the Gaussian random function, the 
orrelation between the point x

θ

i and xj is defined as c 
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T he Kriging predictor is  
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where µ̂  is the estimated value of µ , R denotes the 

matrix whose (i, j) entry is nn× [ ])(),( ji ZZ xxCorr . 

r is vector whose ith element is 
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The detailed derivation of Eq. (4) can be found in [8]. 
 
The unknown parameter to be estimated for constructing 

the Kriging model is θ . This parameter can be 
estimated by maximizing the following likelihood 
function 
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where 1 denotes an m-dimensional unit vector. 
 
Maximizing the likelihood function is an m-dimensional 
unconstrained non-linear optimization problem. In this 
paper, the alternative method [9, 10] is adopted to solve 
this problem.  

For a given , θ µ̂ and can be defined as  2σ̂
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and the (i, j)th element of matrix B is ijt
2
1

 with  
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For this updated , new values of newθ µ̂  and can be 
calculated using Eq. (7) and (8). This routine is iterated 
until function Ln converges to a maximum value.  

2σ̂

  
The accuracy of the prediction value largely depends on 
the distance from sample points. Intuitively speaking, the 
closer point  to sample points, the more accurate is 
the prediction

x
( )xŷ . This intuition is expressed in 

following Equation.  
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 is the mean squared error of the predictor. 
indicates the uncertainty at the estimation point. 

The root mean squared error (RSME) is expressed as  
)(2 xss = . 

 
3. Genetic algorithms (GAs) as optimizer 

 
Genetic algorithms (GAs) [11] are a searching 
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mechanism based on natural selection and genetics. GAs 
use the objective function value itself, not its derivative 
information. This feature makes GAs robust and 
attractive to the aerodynamic design problems where 
non-linearity, multi-modality and discontinuities may 
exist. Another merit of GAs is that they search the 
optimum point from a population of points, not a single 
point. It makes GAs the promising methods for the 
multi-objective (MO) problems. The population of points 
can represent Pareto optimal set of MO problems [12]. 
The definition of Pareto optimality is as follow: 
 
Suppose  and  are in the 
population and is the set of objective 
functions to be maximized 

),( 111 yxX =
(F =

),( 222 yxX =
), 21 ff

 
1. is said to be dominated by , if  is 
partially less than , i.e., 
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and )( 222 Xff ≤)( 1X ) F( 1XF ≠ . 
2. is said to be non-dominated if there doesn’t exist 

in the population that dominates . 
1X

2X 1X
 
In Figure 1, red points are the Pareto solutions. Each 
point in the Pareto set is optimal in the sense that no 
improvement can be achieved in any objective function 
without degradation in the others.  
 
The general procedure of the genetic algorithms is shown 
in Figure 2.  
 
1. Creation of initial population 
2. Evaluation of fitness (objective) function 
3. Selection of parents according to the rank (fitness) 
4. Crossover and mutation 
5. Check the convergence. If not converged, the 

algorithm returns to the process No. 2.   
 

4. Exploration of the global optimization and 
improvement of the model 

 
Once the approximation model is constructed, the 
optimum point can be explored using an arbitrary 
optimizer on the model. However, it is possible to miss 
the global optimum, because the approximation model 
includes uncertainty at the predicted point.  

 
In Figure 3, the solid line is the real shape of objective 
function. Eight points are selected for constructing the 
Kriging model and the dots line represents the predicted 
value by the Kriging model. The minimum point on the 
Kriging model is located near x=9, whereas, the real 
global minimum of the objective function is sited near 
x=4. However hard we search the global minimum on 
the present Kriging model, the real global minimum near 
x=4 cannot be found. For a robust search of the global 
optimum, the predicted value by the Kriging model and 
its uncertainty should be considered at the same time.  
Figure 4 shows the predicted value and the standard error 

of the Kriging model. Around x=9.5, the standard error 
of the Kriging model is very small because there are 
many sample points around this point. Thus, the 
confidence interval is very short as shown in Figure 4.  
On the other hand, the standard error is very large around 
x=3.5 due to the lack of sample points around there. 
Thus, the confidence interval at this point is very wide. 
The minimum inside this interval is less than the present 
minimum point on the Kriging model. This point has a 
somewhat large probability to become the global 
minimum.  
 
This concept is expressed in the criterion of EI [10]. The 

I of minimization problem can be calculated as follows E 
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where fmin is the minimum value among n sampled 
values. Φ and φ  are the standard distribution and 
normal density, respectively. By selecting the maximum 
EI value point as an additional sample point, the robust 
exploration of the global optimum and the improvement 
of model can be achieved simultaneously.  
 

5. Visualization of model 
 
One of the advantages of using approximation model is 
that it shows the relationship between the objective 
function and design variables. This relationship is very 
helpful to identify how much influence each design 
variable has on the objective function. Based on the 
result, designer can eliminate the design variables that do 
not have significant effect on objective function. In order 
to evaluate the effect of each design variable, the total 
variance of the model is decomposed into that of each 
design variable and their interactions. It is called the 
functional analysis of variance (ANOVA). The 
decomposition is accomplished by integrating variables 
out of the model . The total meanŷ ( total )µ̂  and 

variance ( )2ˆ totalσ of model  are as follows: ŷ
       ∫ ∫ ⋅⋅⋅⋅⋅⋅⋅⋅≡ nntotal dxdxxxy 11 ),......,(ˆµ̂  (14) 
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The two-way interaction effect of variable  and  
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)(ˆ ii xµ  and ),(ˆ , jiji xxµ  quantify the effect of variable 
xi and interaction effect of xi and xj on the objective 
function. 
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 The variance due to the design variable  is ix
( )[ ] iii dxx 2ˆ∫ µ  (18) 

Table 1. Parameter ranges of design space 
 Lower bound Upper bound 

rLE 0.005 0.06 
XUP 0.35 0.50 
ZUP 0.05 0.15 
XLO 0.35 0.50 
ZLO -0.12 -0.04 

ZXXUP -1.0 -0.4 
ZXXLO 0.3 1.0 
ZTE -0.02 0.02 
αTE -8° -3° 
βTE 4° 8° 

The proportion of the variance due to design variable  
to total variance of model can be expressed by dividing 
Eq. (18) with Eq. (15). 

ix

( )[ ]
[ ]∫ ∫
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⋅⋅⋅⋅−⋅⋅⋅⋅ nn
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1
2

1

2
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This value indicates the sensitivity of the objective 
function to the variation of the design variables and their 
interactions. 
 

 6. Results 
 In this design space, the sample points were selected by 

using the orthogonal arrays (OAs) [6, 7]. OAs has a good 
property of distributing points in multi-dimensional 
design space uniformly. Important parameters of OAs are 
strength and level. If the OAs has strength k and level l, 
all projections to k-dimension are uniformly distributed. 
The OAs used in this investigation has strength 2 and 
level 5 with 50 sample points. Figure 6 shows geometry 
of some sample airfoils. The OAs code used in this study 
was downloaded from STATLIB (http://lib.stat.cmu.edu). 

In this study, the Kriging-based genetic algorithm was 
applied to a two-dimensional airfoil design and the 
optimization of a flap’s position in a multi-element 
airfoil to maximize the lift-to-drag ratio (L/D). 
 
1) Airfoil design 
The first design problem is to maximize L/D of an airfoil 
at the condition of Mach=2.0 and an angle of attack 
(AOA) =2.0˚, under the constraint of maintaining the 
cross-sectional area of the airfoil to the same level of 
RAE2822.  

 
Genetic algorithm with the Kriging model 
The performance of 50 sample airfoils was evaluated 
using a Navier-Stokes code. This code utilized a TVD 
upwind scheme for spatial discretization of convective 
terms and a LU-SGS method [14] for time integration. A 
Kriging model was then constructed based on the sample 
data and the model was used for the objective function 
evaluation in the optimization process of GA. However, 
if GA searches the maximum L/D point based only on 
the predicted value by Kriging model, it may miss the 
global maximum point because the model has some 
uncertainty at the predicted point. In this study, the 
objective function L/D was transformed to the EI to find 
the global optimum point robustly and the design 
constraint was treated as the other objective function of 
the optimization problem.   

               
Definition of airfoil geometry and design variable  
The geometry was parameterized by the PARSEC airfoil 
[13]. This parameterization technique was developed to 
keep the number of design variable as low as possible 
while controlling important transonic aerodynamic 
features effectively. Figure 5 illustrates 11 basic 
parameters for PARSEC airfoil: 
  
1. Leading edge radius (rLE) 
2. Trailing-edge coordinate (ZTE) 
3. Trailing-edge direction (αTE) 
4. Trailing-edge wedge angle (βTE) 
5. The crest of upper surface’s X coordinate (XUP)  
6. The crest of upper surface’s Z coordinate (ZUP) 

 7. The curvature at the crest of upper surface (ZXXUP) 
Thus, the single objective problem, ‘the maximization of 
L/D’, is thus changed to the MO problem, ‘the 
maximization of both EI and Area ratio’. The objective 
functions are expressed as follows: 

8. The crest of lower surface’s X coordinate (XLO) 
9. The crest of lower surface’s Z coordinate (ZLO) 
10. The curvature at the crest of lower surface (ZXXLO) 
11. The trailing edge thickness (ΔZTE)   
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In this study, only sharp trailing-edge airfoil was 
considered, therefore was set to zero. A total of 10 
design variables were used to define the geometry of 
airfoil. 

TEZ∆

  

2822

2822 )(.1 
rae

rae

A
AAabsratioArea −

−=  (21) Design space and selection of sample points 
The upper and lower bound of each parameter was 
determined lest the PARSEC should reproduce 
unrealistic airfoil geometry such as fish-tailed airfoil. 
The parameter ranges of design space are shown in Table 
1.  

A: cross-section area of airfoil,  
ARAE2822 : cross-section area of RAE2822 airfoil 
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genetics algorithm (MOGA). The number of both 
population and generation are 100. The Pareto set 
obtained by MOGA is shown in the Figure 7. Among the 
Pareto solutions, the airfoil that shows the highest L/D 
performance was selected as additional sample one. Then, 
the performance of the airfoil was evaluated by the 
Navier-Stokes code and the Kriging model was updated 
with 51 sampled data. This routine was iterated until L/D 
was not improved any more. After 5 additional sample 
airfoil selections, there was no L/D improvement. The 
geometry and pressure distribution of the optimized 
airfoil are shown in Figure 8. The L/D performance and 
the cross-section area of optimized airfoil are compared 
with those of RAE2822 in Table 2. L/D is improved 

ithin the design constraint. w 
Table 2. Comparison of L/D and section area of airfoils 

 L/D Area of 
Cross-section 

RAE2822 58.0178 0.07777 
Optimum 60.7546 0.07864 

 
Functional analysis of variance (ANOVA) 
In order to estimate the main and the two-way 
interactions effect of design variables, the total variance 
of model was decomposed into that of each design 
variable and their interactions. Figure 9 shows the main 
effect of design variables. According to the main effect 
plot, the objective function (L/D) is sensitive to the 
change of ZLO, ZUP, rLE, ZXXUP and ZXXLO and is 
insensitive to the change of other design variables.  
 
There are 45 two-way interactions because the number of 
design variable is 10. Two of those two-way interactions 
are plotted in Figure 10. According to the result, the 
objective function is sensitive to the change of the 
interaction ZUP-ZLO and is insensitive to the change of the 
interaction rLE- ZXXUP.  
 
The proportion of the variance due to the each design 
variable and their interactions to the total variance was 
calculated by using Eq. (19). Design variables and their 
interactions whose proportion to total variance is over 
than 1.0% are shown in Figure 11. 
According to these results, it seems that ZLO, ZUP, rLE, 
ZXXUP, ZXXLO are very important variables in L/D 
optimization design. On the other hand, other parameters 
seem less important to the design of high L/D airfoil. 
 
Design of airfoil using 5 variables 
In order to verify the result of the functional ANOVA, 
airfoil design was performed with only 5 important 
design variables (ZLO, ZUP, rLE, ZXXUP, ZXXLO). The 
geometry and pressure distribution of the optimized 
airfoil with 5 design variables are compared with those 
of the optimized airfoil with 10 design variables and 
RAE2822 in Figure 12. The geometry near the trailing 
edge show a somewhat large difference between the 
design result of 5-variable and 10-variable case, because 
the design variables defining the shape near the trailing 

edge are fixed in 5-variable case. The L/D performance 
and cross-sectional area of the airfoil designed with 5 
variables are also compared with those of the airfoil 
designed with 10 variables and RAE2822, in Table 3. 
The L/D of the 5-variable case is slightly less than that of 
the 10-variable case, however, it is still larger than that of 
RAE2822, while satisfying the design constraint. It 
shows the validity of the eliminating the design variable 
that has little influence on the objective function based 
on the result of the functional ANOVA.  
 
Table 3. Comparison of L/D and cross-sectional area of 
airfoils 

 L/D Area of 
cross-section 

RAE2822 58.0178 7.7777e-02 

Design-10 60.7546 7.8637e-02 

Design-5 60.1225 7.7997e-02 
 
For the case of 5 design variables, the functional 
ANOVA was also performed. Figure 13 shows the 
proportion of variance due to the each design variable 
and their interactions to the total variance of model. 
According to the result, ZUP, rLE-ZUP, ZLO and ZXXUP have 
a large influence to L/D 
 
2) Optimization of flap’s position 
The second optimization problem is to find the position 
of the flap where the L/D of multi-element airfoil is 
maximized at a specified flow condition (Mach=0.185, 
AOA=6˚, Re=2.51✕106). 
 
The geometry and design space  
The multi elements airfoil used in the study is NLR7301 
[15] with single flap of 32% chord. The position of flap 
is defined by three parameters (xF/c, yF/c, δF), as shown 
in Figure 14. 
The parameter ranges of design space is defined as 
follows: 

°≤≤°
≤≤
≤≤−

400
%10/%2
%10/%5

F

F

F

cy
cx

δ
 

 
Selection of sample points and evaluation 
25 sample points were selected using OAs of strength 5 
and level 2. The evaluations of sample points are 
performed using TAS code (Tohoku University 
Aerodynamic Simulation code) that is composed of 
unstructured mesh generator (TAS_MESH) [16, 17] and 
flow solver (TAS_FLOW). Figure 15 shows the 
computational mesh around the multi-element airfoil 
generated by TAS_MESH. The prisms layers are located 
near the wall for the viscous flows.  
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The flow solver, TAS_FLOW, is a Navier-Stokes code, 
which uses a finite volume cell-vertex scheme. The 
HLLEW (Haren-Lax-van Leer-Einfeldt-Wada Riemann 
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Figure 4. The predicted value and the standard error of 
the Kriging model 
 

Figure 1. Pareto set of MO problem 
 

   
 

 

 
 

 

Figure 5. PARSEC airfoil and its parameters 
 

 

Figure 2. Flow chart of Genetic Algorithms 
 

 
 
 
 Figure 6. Geometry of some sample airfoils 

 

  

 
Figure 3. The objective function and the Kriging model Figure 7. The Pareto solutions 
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(a) Geometry of airfoils 

 
 
  (a) Two-way interaction between ZUP-ZLO 

 

 

 

(b) Pressure distributions of airfoils 
 
 
Figure 8. Comparisons of geometry and pressure 
distribution of airfoils 
 
  
 (c) Two-way interaction between rLE-ZXXUP 
  

 

 
Figure 10. The two-way interaction of design variables 

 

  
Figure 11. The proportion to the total variance Figure 9. The main effect of design variables 
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Figure 14. NLR7301 with single flap 

 
 (a) Geometry 
  
  

 

 

 
(b) Pressure distributions 

 
 

Figure 12. Comparisons of geometry and pressure 
distribution of airfoils 

(a) Over view of computational mesh 
 

  
  

 

 
 (b) Prism layer near the wall  

  
Figure 13. The proportion to the total variance Figure 15. Unstructured mesh around the multi elements 

airfoil  
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Figure 16. L/D plot at deflection angle, δF= 9.66˚ 
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