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In this paper, Kriging model is applied to a constrained multi-objective optimization 
problem. In order to balance the local and global search in the Kriging model, the criterion 
‘expected improvement (EI)’ is adopted. Probability of satisfying the constraints is 
calculated in the Kriging model to impose the constraint effect into EI. Search region of the 
design space is modified during the optimization by investigating the distribution of the 
design variables. Functional analysis of variance (ANOVA) is performed to identify which 
design variables are important for the objective and constraint functions. The present 
method is applied to a transonic airfoil design for the validation.  

Nomenclature 
A  = cross-sectional area of airfoil 

),( ⋅⋅d   = distance function between two points 
)]([ ⋅IE  = expected improvement 

DL /   = lift to drag ratio  
r′   = vector of correlation values for Kriging model 
R   = correlation matrix for Kriging model 

)(2 ⋅s   = mean squared error of the predictor 

)(2 ⋅−is      = cross-validated mean squared error of the predictor 
x   = vector denoting position in the design space 
x   = scalar component of x 
y   = vector of response data 

)(⋅y  = unknown function 
)(ˆ ⋅y   = estimated value of  )(⋅y

)(ˆ ⋅−iy       = cross-validated prediction  

)(⋅Z   = deviation from constant model 
β   = constant global model of Kriging model 
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β̂   = estimated value of β  
φ  = standard normal density 
Φ  = standard normal distribution 
η              = mean of distribution in normalized search region 

totalµ̂   = total mean of model 

θ   = vector of correlation parameters for Kriging model 
σ              = standard deviation of distribution in normalized search region 

2σ̂   = estimated sample variance 
2ˆ totalσ   = total variance of model 

 

I. Introduction 
ecently, optimization methods using approximation models1 attract a large attention in the field of aircraft 
design because it saves a lot computational time for evaluation of objective function. However, it is apt to miss 

the true optimum in the design space if the exploration relies only on the estimated function values of the 
approximation model because these values include uncertainty at unknown points. For the robust exploration of the 
true optimum with the approximation model, both the estimated function value and its error should be considered 
at the same time.  

 R

The Kriging model2-3, developed in the field of spatial statistics and geostatistics, has gained the popularity today.  
The Kriging model predicts the distribution of function values at an unknown point instead of the function values it 
self. From the distribution of function values, the function value and its uncertainty at unknown points can be 
estimated. By using these values, the balanced local and global search is possible. This concept is expressed using 
the criterion ‘expected improvement (EI)’4.  EI indicates the probability of a point being the true optimum in the 
design space. By selecting maximum EI point as an additional sample point of the Kriging model, the improvement 
of accuracy and the robust exploration of the true optimum can be achieved at the same time.  

In this study, the Kriging model is applied to the constrained multi-objective optimization problem for a 
transonic airfoil design. The model is constructed for each constraint and objective function. In the Kriging model 
for the objective function, the expected improvement is calculated. In the Kriging model for the constraint, the 
probability of satisfying the constraint is calculated. Based on these values, an additional sample point for the 
balanced local and global search is selected. 

Another advantage of using the approximation method is that it shows the relation between the objective 
function and the design variables. By applying the functional analysis of variance5 (ANOVA) to the approximation 
model, one can identify which design variables are important for the objective and the constraint functions 
quantitatively. By using the result of the ANOVA, the present author successfully reduced design variables that 
have little effect to objective function6.  

However, the quantitative result of ANOVA largely depends on regional selection of the design space. If the 
search region of the design space is changed, this quantitative information is also changed. It means that the design 
variable which is considered to be negligible may become important in a different region of the design space. Thus, 
in order to use the ANOVA results effectively, the search region of the design space must be determined 
adequately. Determination of the search region is very important for the optimization design problem itself. No 
matter how good an optimizer the designer has, he cannot find a good design solution in an inadequate search 
region of the design space. Thus, the validity of the search region should be examined and if it is inadequate, the 
search region should be changed. In this study, the search region of the design space is changed during the 
optimization process through the validity examination of the search region.  

 

II. Kriging Model  
The present Kriging model expresses the unknown function y(x) as  

)()( xx Zy += µ  (1) 
where  is an m-dimensional vector (m design variables), x µ is a constant global model and  represents a local 
deviation from the global model. In the model, the local deviation at an unknown point (x) is expressed using 

)(xZ
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stochastic processes. The sample points are interpolated with the Gaussian random function as the correlation 
function to estimate the trend of the stochastic processes. The correlation between  and  is strongly 
related to the distance between the two corresponding points, x

)( iZ x )( jZ x
i and xj. However, the Euclidean distance is not used, 

because it weighs all design variables equally. In the Kriging model, a special weighted distance is used instead.  
The distance function between the point at xi and xj is expressed as  

                                                                            
2

1
)( j

k
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k

m

k
k

ji xxd −= ∑
=
θx,x   (2) 

where kθ )0( ∞≤≤ kθ is the kth element of the correlation vector parameter θ .  By using the specially weighted 
istance and the Gaussian random function, the correlation between the point xi and xj is defined as d 

( )[ ] [ ]),(exp),( jiji dZZCorr xxxx −=  (3) 
 
The Kriging predictor is  

)ˆ(ˆ)(ˆ 1 µµ 1yRrx −′+= −y  (4) 

where µ̂  is the estimated value of µ , R denotes the nn× matrix whose (i, j) entry is [ ])(),( ji ZZCorr xx . r is 

vector whose ith element is 
 
                                                                             [ ])(),()( i

i ZZCorrr xxx ≡  (5) 
and . )](,),........([ 1 nxyxy=y

The detailed derivation of Eq. (4) can be found in [7]. 
 
The unknown parameter to be estimated for constructing the Kriging model is θ . This parameter can be estimated 
by maximizing the following likelihood function 
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where 1 denotes an m-dimensional unit vector.   
 
Maximizing the likelihood function is an m-dimensional unconstrained non-linear optimization problem. In this 
paper, an alternative method8 is adopted to solve this problem.  

For a given θ , µ̂ and can be defined as  2σ̂
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2ˆ  (8) 

The accuracy of the prediction value largely depends on the distance from sample points. Intuitively speaking, the 
closer point x  to sample points, the more accurate is the prediction ( )xŷ . This intuition is expressed in following 
Equation. 
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s2(x) is the mean squared error of the predictor. s2(x) indicates the uncertainty at the estimation point. The root mean 

squared error (RSME) is expressed as )(2 xss = . 
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III. Expected Improvement and Treatment of Constraint 

A. Expected Improvement 
In order to find the global optimum in the Kriging model, both the estimated function value and the uncertainty 

at the unknown point are considered at the same time. Based on these values, the point having the largest probability 
of being the global optimum is found. The probability of being the global optimum is expressed by the criterion 
‘expected improvement (EI)’. The EI in minimization problem is expressed as follows: 

                                                                               (10) ∫ ∞−
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B. Treatment of Constraint 
In order to impose the constraint effect into the optimization problem, the probability of satisfying the constraint 

is calculated in the Kriging model. If there are constraints as follows,  
                                                                             kiac ii ,.......,1)( =>       x  (12) 
probabilities of satisfying the constraints9 can be calculated as follow: 
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By multiplying these probabilities to conventional EI value, the constraint effects imposed EcI can be calculated as 
follow: 
                    (14) ))(())(())(()()( 11 kkiic acPacPacPIEIE >⋅⋅⋅⋅>⋅⋅⋅⋅>⋅= xxx
Based on this value, an additional sample point for the balanced local and global search is selected, while satisfying 
the constraints.   

 

IV. Functional Analysis of Variance 
In order to identify the effect of each design variable to the constraints and the objective functions, the total 

variance of the model is decomposed into the variance component due to each design variable. It is called the 
functional analysis of variance (ANOVA). The decomposition is accomplished by integrating variables out of the 
model .  ŷ
The total mean )ˆ( totalµ  and variance of model  are as follows: ( 2ˆ totalσ ) ŷ
                                                           (15) ∫ ∫ ⋅⋅⋅⋅⋅⋅⋅⋅≡ nntotal dxdxxxy 11 ),......,(ˆµ̂

                                                 [ ]∫ ∫ ⋅⋅⋅⋅−⋅⋅⋅⋅= nntotal dxdxxxy 1
2

1
2 ˆ),......,(ˆˆ µσ  (16) 

The main effect of variable xi is 
                                                 (17) ∫ ∫ −⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅≡ +− µµ ˆ),,(ˆ)(ˆ 1111 niinii dxdxdxdxxxyx

The two-way interaction of variance xi and xj is  
µµµµ ˆ)(ˆ)(ˆ ),......,(ˆ),(ˆ 111111, −−−⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅≡ ∫ ∫ +−+− jjiinjjiinjiji xxdxdxdxdxdxdxxxyxx  (18) 

 
The variance due to the design variable xi is 

                                                     ( )[ ] iii dxx
2

ˆ∫ µ  (19) 

The proportion of the variance due to design variable xi to total variance of model can be expressed by dividing Eq. 
(19) with Eq. (16). 
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This value indicates the sensitivity of the model to the variation of each design variable.  
 

V. Change of Search Region 

A. Generation of Superior Population   
In order to examine the validity of the search region, the superior population (SP) is generated. The meaning of 

‘SP’ in this paper is that its individual satisfies all design constraints and the objective function values of its 
individual are larger than certain values. The simplest way to generate the SP is the Monte-Carlo simulation (MCS). 
However, MCS requires a large number of function evaluations to generate a moderate number of individuals if 
superior individuals are distributed in the very small portion of the search region. In this study, the genetic 
algorithms10 (GAs) is used for the generation of the SP. The GAs used for this purpose requires not to find the 
global optimum but to maintain diverse individuals whose objective function value is better than a certain value. For 
this purpose, this method takes advantages of the mutation operation to prevent the convergence of individuals. 

B. Distribution Investigation and Search Region Expansion 
 For the generated SP, the distribution of design variables is investigated. Figure 1 shows three types of design 

variable distributions. 
 

 
(a)                                                        (b)                                                        (c) 

Figure 1. Typical types of distributions 
  

In Fig. 1(a), a peak of distribution is located at the middle part of the normalized search region and the density of 
the design variable is very small near the boundary region. In this case, the probability of superior individuals 
existing outside of the search region is considered to be very small. Thus, it can be said that the search region for 
this design variable is relatively reasonable. On the other hand, in Figs. 1(b) and 1(c), the distributions of design 
variables are concentrated near the boundary region. In these cases, probability of superior individuals existing 
outside of the search region is considered to be very large. Thus, the search region should be expanded and the 
region outside of the boundary should be examined whether it has a superior individual or not. The criterion used for 
the validity check of the search region in this study is as follows:  

if(η< 0.05   or   η>0.95)then 
search region is invalid

else 
if (η-1.96σ<0 .or. η+1.96σ>1)then 

search region is invalid
else 

search region is valid
endif 

endif 
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If the search region is invalid, the search region is redefined by using following equations. 
 

otherwise        σw.ηxσw.., η
0.950.05 if             σ) .η(xσ.., η(

)961,1max()9610min(
961,1max)9610min

21 ⋅+<<⋅−
<<+<<− η

 (21) 

 
w1 and w2 are weighting parameters which accelerate the convergence of the search region. After the final search 
region is defined, the converged search region can be defined by using following equation. 

 
σ.ηxσ.η 961961 +<<−  (22) 

VI. Optimization Problem 
The present method is applied to a transonic airfoil design. The objective of design is as follows: 
  

Minimize          dC
subject to       a)  2822_ RAEll CC ≥

b)  2822RAEAreaArea ≅
at the flow condition of Mach=0.73 and an angle of attack (AOA) =2.7˚. Cl and Cd are drag and lift coefficient of 
designed airfoil and Cl_RAE2822 and Cd_RAE2822 are those of RAE2822 airfoil. Area is the cross-sectional area of the 
airfoil.  

A. Definition of Airfoil Geometry and Design Variables 
The geometry was parameterized by the PARSEC airfoil11. This parameterization technique was developed to 

keep the number of design variable as low as possible while controlling important transonic aerodynamic features 
effectively. Figure 2 illustrates 11 basic parameters for 
PARSEC airfoil 

Parameters are leading edge radius (rLE), upper and 
lower surface crest location (XUP, ZUP, XLO, ZLO) 
including the curvature there (ZXXUP, ZXXLO), coordinate 
(ZTE), thickness (∆ZTE), direction (αTE), and wedge angle 
((βTE) of the trailing edge. In this study, only a sharp 
trailing-edge airfoil was considered, therefore, ∆ZTE was 
set to zero. A total of 10 design variables were used to 
define the geometry of airfoil. 

B. Initial Search Region 
The upper and lower bound of each parameter was de

fish-tailed airfoil. The parameter ranges of the search region
 

Table 1. Parameter r

 rLE ZTE αTE βTE XUP

Lower bound 0.007 -0.02 -8° 4° 0.35

Upper bound 0.06 0.02 -3° 8° 0.50
 

C. Construction of Kriging Model 
Construction of Kriging model requires 4 steps as show

the search region. It is ideal for the sample points to be sca
scatter points uniformly in the space is called ‘space-filling’
the orthogonal array12 and the Latin hypercube method13, e
the space-filling. This method ensures that a point always
sample points. A total of 50 sample points (airfoils) are 

 
American Institute of Aero

 

6

Figure 2. PARSEC airfoil and its parameters 
termined to avoid unrealistic airfoil geometry such as a 
 are shown in Table 1.  

ange of search region 

ZUP ZXXUP XLO ZLO ZXXLO

0.07 -1.0 0.35 -0.12 0.3 

0.15 0.2 0.50 -0.07 1.0 

 in Fig. 3. First, sample points should be selected from 
ttered uniformly in the search space. The method used to 
. There are a few kinds of space-filling methods, such as 
tc. In this study, the Latin hypercube method is used for 
 exists inside the interval partitioned by the number of 
selected from the initial search region. Second step is 

nautics and Astronautics 



evaluations at the sample points. The lift and drag performances of 50 sample airfoils were evaluated using a 
Navier-Stokes code. This code utilized a TVD upwind scheme for spatial 
discretization of convective terms and a LU-SGS method14 for time integration. 
With the sample data obtained from the Navier-Stokes analysis, the Kriging 
parameter (θ) is determined  by solving maximization problem of Eq. (6). 
Once the model is constructed, the model should be validated. The validation is 
performed by the cross validation5. If the model is valid, all cross-validated 
values should lie inside of the confidence region. It can be check by using the 
“standardized cross-validated residual” as follows: 

 

)(
)(ˆ)(

ii

iii

xs
xyxy

−

−−
 (23)  

Figure 3. Construction of 
Kriging model 

If we assume 99.7% confidence, the residual for all the points should be in the 
interval [-3, +3]. Figure 4 shows the standardized cross-validated residuals 
plots. Both the lift and the drag Kriging model, all points lie in the interval [-3, 
+3].        

                       
Figure 4. Standardized cross-validated residuals 

D. Optimization  
Once the models are constructed, the optimal point is explored in the Kriging models by using multi-objective 

genetic algorithms15 (MOGAs). For the balanced local and global search and the implication of the constraint, the 
optimization problem is transformed as follows. 

 
Maximize 

                                           ( )[ ] [ ] )()0,max( 2822_min RAEllc CCPCdCdEIE >×−=x  (24) 
 

                                                 
2822

2822(
.1

RAE

RAE

Area
)AreaAreaabs

ratio Area
−

−=  (25) 

Overall procedure of the optimization is shown in Fig. 5. 

Figure 5. Optimization procedure

 
1. Kriging models are constructed for Cl and Cd 

with N sample points 
  2.    GA operations  

- Generation of initial population and    
evaluation of Ec(I) and Area ratio 

- Selection of parents 
- Crossover and mutation 
- Evaluation of new individuals in Kriging       
models  
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When the generation exceeds 100, the point which gives maximum EI is selected as an additional sample point. This 
routine is iterated until the termination criterion is reached. In this study, termination criterion is the maximum 
number of  additional sample points.  

Figure 6.  Change of search region

E. Change of Search Region 
Once the optimization is over, the validity of the search region is examined. This procedure is shown in Fig. 6. 

First, the SP population is generated by GA. The distribution of design variable is investigated and the validity of the 
search region is checked. If the search region is invalid, the 
search region is redefined by using Eqs. (21). A few additional 
sample points should be selected from the extended region of 
the redefined search region to ensure the accuracy of the 
Kriging models. This routine is iterated until no search region 
expansion is achieved.  

 

                       

                        

                         

                        

                          
Figure 7. Comparison of the initial search region and the final search region   

F. Result and Discussion 
The initial and the final search region are represented in Fig. 

7. The final search region of all design variables, except ZTE 
and ZXXUP, expanded outside of the initial search region. This 
final search region is obtained after 3 search region 
redefinitions were performed.  
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Figure 8. Comparison of design variable distribution between in the initial and converged search region 

 
The distributions of the design variables (rLE, ZUP and ZLO) in the initial search region are compared with those in 

the final search region in Fig. 8. In the initial search region, design variables are concentrated near the boundary 
region. On the other hand, in the final search region, design variables are situated inside of the search region and the 
converged region is made. 

The converged search region is also plotted on Fig. 9. The converged search region of rLE, ZUP and ZLO is located 
outside of the initial search region. It means that the initial search region of these variables was inadequately defined. 
The final design point obtained in the final search region is also plotted in Fig. 9. All design variables of this point, 
except βTE, are located inside of the converged search region.  
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Figure 9. The converged search region 

 
In order to identify the effect of each design variable to the lift and the drag coefficients, the ANOVA is 

performed to both the initial search region and the final search region. Design variables and their interactions whose 
proportion to the total variance is over than 2.0% are shown in Fig. 10. 

 

              
(a) Initial search region 

            
(b) Final search region 

Figure 10. ANOVA results in the initial search region and the final search region. 
 
According to the results, ZUP and ZLO are important design variables in both the initial and final search regions. rLE 
which was not so important in the initial search region becomes important in the final search region. Thus, the 
elimination of a design variable without the validity check of the search region may bring about an undesirable 
design result. In the final search region, design variable βTE has little effect on both the lift and the drag coefficient. 
This is the reason why βTE of the final design point is deviated from the converged search region. BecauseβTE is not 
so important design variable for the present design problem, the final design point is found outside of the converged 
search region ofβTE.  

The geometry and pressure distribution of the designed airfoil (final design point) are shown in Fig. 11. The 
airfoil whose drag coefficient is smallest while satisfying the constraints is selected from the non-dominated 
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solutions of the MOGA. The aerodynamic performance and cross-sectional area of the design are compared with 
those of RAE2822 in Table 2. While satisfying the constraints, the drag coefficient of the designed airfoil is 
significantly decreased. Strong shock on the upper surface of RAE2822 airfoil has disappeared. These values are 
also compared with the result of the fixed search region case16 including the final design point. CL-fixed 
(=Cl_RAE2822) calculations are also performed for two designed airfoils. The pressure distributions are shown in Fig.12 
and the aerodynamic performances are compared in the Table 3.       

Table 2. Comparison of aerodynamic performance and cross-section area of airfoils 

 CL CD L/D AREA 

RAE2822 0.7534 0.01687 44.65 0.0777 
Design 

(Present method) 0.7632 0.01410 54.12 0.0779 
Design 

(Fixed search region) 0.7827 0.01420 54.80 0.0783 
 

                    
Figure 11. Geometry and pressure distribution of the designed airfoil 

 
 

Figure 12. Comparison of pressure distribution  
at the fixed CL condition(Cl=0.7534)  

 
 

Table 3. Comparison of aerodynamic performance 

 CL CD L/D 
Design 

(Present method) 
AOA = 2.650 

0.7534 0.01398 53.87

Design 
(Fixed search region)

AOA=2.557 
0.7534 0.01406 53.54

 
 
 
 
 

 
Even with the inadequate initial design space, an airfoil which has a good aerodynamic performance can be obtained 
by the change of search region. 
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VII. Conclusion 
In this paper, Kriging model was applied t onstrai ective optimization problem. The model was 

constructed for each constraint and objectiv io ng model for the drag coefficient, the expected 
imp

on was modified. Functional analysis of variance (ANOVA) 
was
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