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In this paper, analysis of variance (ANOVA) and self-organizing map (SOM) are applied 
to data mining for aerodynamic design space. These methods make it possible to identify the 
effect of each design variable on objective functions. ANOVA shows the information 
quantitatively while SOM shows it qualitatively. Furthermore, ANOVA can show the effect 
of interaction between design variables on objective functions and SOM can visualize the 
trade-off among objective functions. This information will be helpful for designer to 
determine the final design from the non-dominated solutions of multi-objective problem. 
These methods are applied to a fly-back booster of reusable launch vehicle design which has 
4 objective functions and 71 design variables, and a transonic airfoil design performed with 
adaptive search region method.       

I. Introduction 
ecent advances in computing power and the development of high fidelity Computation Fluid Dynamics (CFD) 
codes, design optimization using CFD become one of inevitable tools in the field of aircraft designs. There are 

several approaches for design optimization using CFD: Adjoint method, which is gradient-based method, is very 
efficient for design problems having a lot of design variables1-2; Genetic Algorithm (GA), which is population-based 
method, is very powerful for multi-objective design problems3-5.  

 R
 
However, researches on the optimization so far are concentrated only on finding the optimal solution or the non-

dominated solutions of multi-objective problems. In the engineering design field, it is also important to determine 
the final design from nominated solutions such as non-dominated solutions of multi-objective problem. Thus, it is 
preferable for a designer to provide the non-dominated solutions with some useful information for the decision of 
the final design. The information about the design space, such as trade-off relations between objective functions and 
the relations between design variables and objective functions will be one of the useful information for decision of 
the final design. Furthermore, this information will be useful to understand why the final design has a good 
performance and makes it possible to simplify the design problem by eliminating the design variables which do not 
have a large influence on the objective functions.           

 
The process to find the information from the design results may be called ‘data mining’. In this study, Analysis 

of Variance (ANOVA) 6 and Self-Organizing Map (SOM) 7 are used for the data mining. The former uses a variance 
of the objective function due to design variables on response surface models. ANOVA can identify not only the 
effect of each design variable but also the effect of interaction between design variables on objective function. 
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ANOVA expresses the information in a quantitative way. On the other hand, SOM employs a nonlinear projection 
algorithm from high to low-dimension and a clustering technique. This method can visualize not only the relation 
between the design variables and the objective functions but also the trade-off between objective functions. The 
method expressed the information in the qualitative way.        

 
These techniques are applied to the results of two design problems: one is fly-back booster of the reusable launch 

vehicle design which treats 4 objective functions and 71 design variables. Results show that the present data-mining 
techniques are useful to analyze the problem with a large number of design variables. The other is a transonic airfoil 
design using the adaptive search region method. It showed that the result of data mining largely depends on the 
definition of the design space.  

II. Analysis of Variance (ANOVA)  
ANOVA uses the variance of the objective functions due to the design variables on the response surface models. 

The response surface model should be constructed for each objective function in order to calculate the variance.  The 
response surface model used in this study is the Kriging model8. 

A. Kriging Model 
The Kriging model, developed in the field of spatial statistics and geostatistics, predicts the value of the known 

point by using stochastic processes. The Kriging model is expressed as follows:  
 

)ˆ(ˆ)(ˆ 1 μμ 1yRrx −′+= −y          (1) 
where x={x1, x2, ••••, xn} denotes the vector of design variables, y is the column vector of sampled response data 
and 1 is unit column vector. R is the correlation matrix whose (i, j) element is 

⎥⎦
⎤

⎢⎣
⎡ −−= ∑

=

n

k

j
k

i
kk

ji xxR
1

2
exp),( θxx    (2) 

 
The correlation vector between x and the m sampled data is expressed as 
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The can be calculated as follow equation: μ̂
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The unknown parameter, θ, for the Kriging model can be estimated by maximizing the following likelihood 
function: 
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Maximization of the likelihood function is an m-dimensional unconstrained non-linear optimization problem. The 
alternative method9 is used to solve this problem.  

B. Decomposition of Variance 
Once the response surface model is made, the effect of design variables on the objective function can be 

calculated by decomposing the total variance of model into the variance due to the design variable. The 
decomposition is done by integrating variables out of the model . The total mean and the variance of 
model are as follows: 

ŷ )ˆ( totalμ )ˆ( 2
totalσ
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The main effect of variable and the two-way interaction effect of variable   and  are given as   ix ix jx
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)(ˆ ii xμ  and  quantify the effect of variable xi and interaction effect of xi and xj on the objective function. ),(ˆ , jiji xxμ
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The proportion of the variance due to design variable  to total variance of model can be calculated by dividing Eq. 
(8) with Eq. (11): 
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This value indicates the effect of design variable xi on the objective function. 
  

III. Self-Organizing Map (SOM) 

A.  General SOM algorithm 
SOM is an unsupervised learning, nonlinear projection algorithm10 from high to low-dimensional space. This 

projection is based on self-organization of a low-dimensional array of neurons. In the projection algorithm, the 
weights between the input vector and the array of neurons are adjusted to represent features of the high dimensional 
data on the low-dimensional map.  The closer two patterns are in the original space, the closer is the response of two 
neighboring neurons in the low-dimensional space. Thus, SOM reduces the dimension of input data while preserving 
their features.  
 
A neuron used in SOM is associated with weight vector mi= [mi1, mi2, ……,min] (i=1,….,M) where n is equal to the 
dimension of input vector and M is number of neuron. Each neuron is connected to adjacent neurons by a 
neighborhood relation and usually forms two-dimensional rectangular or hexagonal topology as shown in Fig. 1. 
 

                        
(a) Rectangular                                                                             (b) Hexagonal 

Figure 1 Topology used in SOMs 
 
 
The learning algorithm of SOM is started with finding the best-matching unit (mc) which is closest to the input 
vector x as follow: 
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),,1(       min Mkkc LL=−=− mxmx    (13) 
Once the best-matching unit is determined, the weight adjustments are performed not only for the best-matching unit 
but also for its neighbors. The adjustment depends on the distance (similarity) between the input vector and the 
neuron. Based on the distance, the best-matching unit and its neighboring become closer to the input vector as 
shown in Fig. 2. The weight vectors are situated in the cross of the solid lines. The best-matching unit is the weight 
vector who is closest to the input vector x. The best-matching unit and its neighbors are adjusted to be closer to the 
input vector x. The adjusted topology is represented with dashed lines. Repeating this learning algorithm, the weight 
vectors become smooth not only locally but also globally. Thus, the sequence of close vectors in the original space 
results in a sequence of the corresponding neighboring neurons in the two-dimensional map.  

 
Figure 2 Adjustment of the best-matching unit and its neighbors 

 

B. Kohonen’s Batch-SOM 
In this investigation, SOMs are generated by using commercial software Viscovery○R SOMine plus 4.011 

produced by Eudaptics GmbH. Although SOMine is based on the general SOM concept and algorithm, it employs 
an advanced variant of unsupervised neural networks, i.e. Kohonen’s Batch SOM. The algorithm consists of two 
steps that are iterated until no more significant changes occur: search of the best-matching unit ci for all input data 
{xi} and adjustment of weight vector {mj} near the best-matching unit. The Batch-SOM algorithm can be 
formulated as follows:  
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where  is the adjusted weight vector. The neighborhood relationship between two neurons j and k is defined by 
the following Gaussian-like function:  
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where djk denotes the Euclidean distance between the neuron k and the neuron j on the map, and rt denotes the 
neighborhood radius which is decreased with the iteration steps t.   

The standard Kohonen algorithm adjusts the weight vector after all each record is read and matched. On the 
contrary, the Batch-SOM takes a ‘batch’ of data (typically all records), and performs a ‘collected’ adjustment of the 
weight vectors after all records have been matched. This is much like ‘epoch’ learning in supervised neural networks. 
The Batch-SOM is a more robust approach, since it mediated over a large number of learning steps. In the SOMine, 
the uniqueness of the map is ensured by the adoption of the Batch-SOM and the linear initialization for input data. 
Much like some other SOMs, SOMine creates a map in a two-dimensional hexagonal grid. Starting from numerical, 
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multivariate data, the nodes on the grid gradually adapt to the intrinsic shape of the data distribution. Since the order 
on the grid reflects the neighborhood within the data, features of the data distribution can be read off from the 
emerging map on the grid. The trained SOM is systematically converted into visual information. 

 

C. Cluster Analysis 
Once the high-dimensional data projected on the two-dimensional regular grid, the map can be used for 

visualization and the data mining. It is efficient to group all neurons by the similarity to facilitate SOM for the 
qualitative analysis, because number of neurons on the SOM is large as a whole. This process of grouping is called 
‘clustering’  

Hierarchical agglomerative algorithm is used for the clustering here. First, each node itself forms a single cluster 
and two clusters, which are adjacent in the map, are merged in each step. The distance between two clusters is 
calculated by using the SOM-ward distance11. The number of clusters is determined by the hierarchical sequence of 
clustering. A relatively small number of clusters are used for visualization, while a large number are used for the 
generation of weight vectors for respective design variables.  

 
 

IV. Results 

A. Fly-back Booster of Reusable Launch Vehicle (RLV) Design   
Geometry of the fly-back booster12 used in this design is shown in Fig. 3(a). In this design, fuselage shape is 

fixed and only wing shape design is considered, because the fuselage is filled with the liquid propellant rocket 
engines, so little change to its size is possible. The design variables used to define wing shape are related to 
planform, airfoil, wing twist and relative wing position to fuselage. A wing planform is determined by five design 
variables as shown in Fig. 3(b). Airfoil shapes are defined at wing root, kink and tip, respectively, by using thickness 
and camber distributions. Both distributions are parameterized by using Bezier curves and linearly interpolated in 
the spanwise direction. Wing twist in refined by using a B-spline curve with six control points. Relative position of 
the wing root to the fuselage is parameterized by x and z coordinates of the leading edge, angle of attack and 
dihedral angle. Total 71 design variables are used to wing geometry definition. 

 
 
 

        
 

(a) Overview                                                                    (b) Definition of wing planform 
  

Figure 3 Geometry of the fly-back booster 
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Figure 4 Typical flight sequence for TSTO fly-back booster 

 
According to the trajectory analysis13, the separation of the booster and orbiter takes places around Mach 3 and the 
booster turns over, slows down, cruise at transonic speed and lands at subsonic speed as shown in Fig. 4. In order to 
maintain good aerodynamic performances in wide flight range, the following 4 objective functions are considered in 
this design. Subsonic, transonic and supersonic flight conditions of the present design are shown in Table 1.  
 

1. Minimization of the difference between supersonic pitching moment and transonic pitching moment. 
TRANSONIC
M

SUPERSONIC
M pp

CCF −=1  (17) 

            A significant control problem related to the RLV flight may originate in a large variation of the 
aerodynamic center between supersonic and transonic flight conditions. It is, then, desirable to  
design wing shapes with a less variation in the aerodynamic center. It will yield easier stability  
control.   

       
2. Minimization of the pitching moment at the transonic flight conditions 

                                                                              TRANSONIC
M p

CF =2     (18)          

       It is known that the arrow wing ensures high aerodynamic performance, while it also produces 
       a large pitching moment. Thus, it should be minimized at the transonic flight conditions for less 
       trim drag and better flight stability. 
 
3. Minimization of the drag at the transonic flight conditions 
                                                                       (19) TRANSONIC

DCF =3

      The trajectory analysis shows that the range of RLV booster is mostly covered by the transonic  
      flight. Thus, the transonic drag should be minimized to increase the flight range. 
 
4. Maximization of the lift at the subsonic flight conditions 

SUBSONIC
LCF =4  (20) 

            To reduce the required runway distance, the lift obtained at the subsonic flight conditions should 
            be minimized.  

 
 

Table 1 Three flight conditions used in the design 
 Mach Number Angle of Attack Reynolds Number 

6×107 Subsonic 0.3 0.0 
6×106 Transonic 0.8 8.0 
6×106 Supersonic 1.2 13.0 
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As the optimizer, Adaptive Range Multi-Objective Genetic Algorithm (ARMOGA)14 is used. The population 

size of the present ARMOGA is 8 and 40 generations are performed. Figure 5 shows 102 non-dominated solutions 
obtained by ARMOGA. However, it is difficult to understand the feature of design space from the Fig. 5.  For the 
better understand of the design space, ANOVA and SOM are performed with 102 non-dominated solutions.  

 
Figure 5 Non-dominated solutions projected onto three-dimensional objective function space  

 
ANOVA 
ANOVA is performed for 4 objective functions. Variance of design variables and their interactions whose 

proportion to the total variance is over than 1.0% are shown in Fig. 6. 

                  

                  
Figure 6  ANOVA results 
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  According to the results, dv7(x coordinate of relative wing position to fuselage) gives the largest effect on the 
objective functions F1 and F2. About F3 and F4, dv18 (rearward camber height at kink) gives the largest effect. dv7 
and dv18 are illustrated in the Fig. 7. These findings correspond to the aerodynamic knowledge.  

        
 
(a) x coordinate of relative wing position to fuselage (dv7)   (b) rearward camber height at kink (dv18) 

 
Figure 7 Illustrations of dv7 and dv18 

 
SOM 
SOM is applied to the non-dominated solutions. Figure 8 is SOMs colored by 4 objective functions. According 

to results, SOMs colored by F1 and F2 show similar color patterns. This means that F1 and F2 are not in the trade-off 
relation because both objective functions should be minimized. On the other hand, though SOMs colored by F3 and 
F4 show the similar distribution of color, F3 and F4 are in a severe trade-off relation because F3 should be minimized 
but F4 should be maximized.  

 

               
(a) F1                                                                    (b) F2 

               
(c) F3                                                             (d) F4 

Figure 8 SOMs colored by objective functions  
 

Figure 9 shows SOMs colored by three design variables (dv7, dv18 and dv15). In Fig. 9(a), colored by dv7, the 
clusters, whose dv7 value is large, are situated at the lower left corner.  In this area, the clusters, whose F1 and F2 
values are large, exist as shown in Figs. 8(a) and 8(b). This means that large dv7 value brings about bad 
performances of F1 and F2. In Fig 9(b), colored by dv18, the clusters, whose dv18 is large, exist in the left-hand side. 
This color pattern is very similar to those for F3 and F4 as shown in Figs. 8(c) and 8(d). This means that large dv18 
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value related with large F3 and F4 values. From the results, it can be said that dv7 has a large effect on the objective 
functions F1 and F2, and dv18 has a large effect on the objective functions F3 and F4. In Fig. 9(c), colored by dv15 
(x coordinate of forward at kink), there is no noticeable trend of color distribution. This means that dv15 has little 
influence on the objective functions. These results are coincident with the results of ANOVA.  

 

V. Transonic Airfoil Design 
In this design, geometry of airfoil is defined by using PARSEC15. Figure 10 shows 11 basic parameters for 

PARSEC airfoil. In this design, only a sharp trailing-edge airfoil was considered, therefore, ΔZTE was set to zero. A 
total of 10 design variables were used to define the geometry of airfoil. The design problem is defined as follows: 

      
(a) dv7                                (b) dv18                                          (c) dv15                   

Figure 9 SOMs colored by design variables 

 
Minimize                  dC

Figure 10 PARSEC airfoil and its parameters 

subject to               a)  2822_ RAEll CC ≥

b)  2822RAEAreaArea ≅
at the flow condition of Mach = 0.73 and an angle of 
attack (AOA) = 2.7˚.  Cl and Cd are drag and lift 
coefficient of designed airfoil and Cl_RAE2822 and 
Cd_RAE2822 are those of RAE2822 airfoil. Area is the 
cross-sectional area of the airfoil.  

  
In this design, the search region of optimization problem is successively changed by investigating the 

probabilistic distribution of design variables. Namely, adaptive search region method16 is used. The design method 
consists of two stages: i) the optimal search and ii) the change of search region. The procedure of optimal search is 
shown in Fig. 11.  
 

Figure 11 Optimal search procedures 

1. Kriging models are constructed for Cl and Cd 
with N sample points. In this study, a number 
of initial sample points are 50. These points are 
selected by using Latin hypercube design 
method17 to spread the points uniformly in the 
search region.  

  2.    GA operations  
- Generation of initial population and    
evaluation.  

- Selection of parents 
- Crossover and mutation 
- Evaluation of new individuals in the Kriging   
models  

 
American Institute of Aeronautics and Astronautics 

 

9



When the generation exceeds 100, the point which gives maximum EI is selected as an additional sample point. This 
routine is iterated until the termination criterion is reached. In this study, termination criterion is the maximum 
number of  additional sample points. 

Figure 12  Change of search region 

Once the optimization is over, the validity of the search region is examined. This procedure is shown in Fig. 12. 
First, the superior population (SP) is generated by GA. The meaning of ‘SP’ is that its individual satisfies all design 
constraints and the objective function values of its individual 
are larger than certain values. The distribution of design 
variable in the SP is investigated and the validity of the 
search region is checked. If the search region is invalid, the 
search region is redefined by using probabilistic method. A 
few additional sample points are required for the extended 
region of the redefined search region to ensure the accuracy 
of the Kriging models. This routine is iterated until no search 
region modification occurs.  

The initial and final search regions are represented in Fig. 
13. The final search region of all design variables, except ZTE 
and ZXXUP, expanded outside of the initial search region. This 
final search region was obtained after 3 search region 
redefinitions were performed. For this design, data mining 
techniques are performed in both the initial and final search regions to examine the dependency on the search region.    

 

 

                       

                        

                         

                        

                          
Figure 13 Comparison of the initial search region and the final search region    
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ANOVA 
First, ANOVA is done in the initial search region with 56 sample data. First 50 points are selected by the Latin 

hypercube design and the last 6 data are selected by the optimal search algorithm shown in Fig.11. The variance of 
design variables and there interactions whose proportion to the total variance is over than 2.0% are shown in Fig. 14. 
According to Fig. 14, ZUP and ZLO have a comparatively large effect on Cl, and ZUP have the largest effect on Cd.  
These parameters are related with definition of airfoil thickness. These findings coincide with the aerodynamic 
knowledge.  

 

     
Figure 14 ANOVA results in initial search region 

 
The ANOVA is also performed in the final search region with 110 sample data. First 56 points are the same 

points used in the initial search region case and the rest of the points are selected during the optimization process 
using the adaptive search region method. According to Fig. 15, ZUP and ZLO give a large effect on Cl, and ZUP and 
ZUP-ZLO have a comparatively large effect on Cd. The proportion of rLE which is small in the initial search region 
becomes large in the final search region. This finding corresponds to the aerodynamic knowledge that the leading-
edge radius is important for drag performance. This means that the effect of design variables on objective functions 
may differs according to definition of the search region. Thus, the elimination of a design variable, which has little 
effect on objective functions, without validity check of the search region may lead to an undesirable design result.  

     

                 
Figure 15 ANOVA results in final search region 

 
SOM  
SOM is also applied to the result of the transonic airfoil design. Figure 16 shows the SOMs colored by Cl and Cd 

in initial search region. In the upper left corner and the lower right corner in Fig. 16 (a) and 16(b), color patterns are 
very similar. On the other hand, in the upper right corner and the lower left corner, color patterns of the clusters are 
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opposite. From these observations, we can classify 56 data into 4 groups: i) Both Cl and Cd are large, ii) Both Cl and 
Cd are small, iii) Cl is large and Cd is small and iv) Cl is small and Cd is large. This means that the Latin hypercube 
design used for the initial sample point selections generated a wide variety of airfoils with various Cl and Cd 
performances successfully 

 

             
(a) Cl                                                                 (b) Cd 

Figure 16 SOMs colored by objective functions in initial search region 
 

 

        
(a) ZUP                                     (b) ZLO                                                                     (c) rLE                  
Figure 17 SOMs colored by design variables in the initial search region 

Figure 17 shows the SOMs colored by three design variables. In Fig. 17(a), the clusters having large ZUP values 
are located in the upper right side and the clusters with small ZUP values are located in the lower left side. The 
distribution of color is similar to that of SOM colored by Cd. In Fig. 17(b), though the distribution of color is not so 
clear, it is slightly similar to that of SOM colored by Cl. In Fig 17(c), colored by rLE, there is no noticeable color 
pattern. From the results, ZUP and ZLO have some effect on Cd and Cl, respectively and rLE give little effect on Cl and 
Cd. The results coincide with results of ANOVA applied for the same search region.  

 

 

          
(a) Cl                                                                                  (c) Cd                       

Figure 18 SOMs colored by objective function in the final search region 
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Figure 19 SOM colored by generated order 

SOM is also applied to the final design space with 110 
data. Figure 18 shows the SOMs colored by Cl and Cd in 
the final search region. In Fig. 18(a), the clusters with 
large Cl values are located in the left-hand side and the 
clusters with small Cl values are located in the right-hand 
side.  On the other hand, in Fig. 18(b), the clusters having 
large Cd values are located in the right side and the cluster 
having small Cd values are located in the left side. From 
these SOMs, we can classify all data into two groups: i) 
Both Cl and Cd performances are good and ii) both Cl and 
Cl performances are not so good. Figure 19 shows the 
SOM colored by the generated order. The data, whose 
generated order is first to 50th, are generated by the Latin 
hypercube design and the data, whose generated order is 
later than 50th, are generated through the optimization 
process. The color distribution of this map is similar with that of Fig 18(a). The clusters with high generated order 
have relatively good Cl and Cd performances. This means that the optimization method used in this investigation 
works well.  

Figure 20 shows the SOMs colored by four design variables. The color pattern of Fig. 20(a) is similar to that of 
Fig. 18(b). The color distributions of Fig. 20(b) and Fig. 20(c) are similar to that of Fig. 18(a). This means that small 
ZUP value is related with a good Cd performance of airfoil. In Fig. 20(d), clusters having small rLE values are located 
in the left-hand side. This is the same with Fig. 18(b). Small rLE value is related with a good Cd performance. The 
results coincide with the results of ANOVA in the final search region. 

 
 

            
(a) ZUP                                                                     (b) ZLO 

             
 (c) XUP                                                                        (d) rLE                      

Figure 20 SOMs colored by design variables in final search region 
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VI. Conclusion 
In this paper, two data mining techniques, analysis of variance (ANOVA) and self-organizing map (SOM), were 

applied to optimization design results. ANOVA shows the effect of each design variables on objective functions 
quantitatively and SOM shows the information qualitatively. Furthermore, ANOVA can show the effect of 
interaction of design variables on objective functions. On the other hand, SOM can show the trade-off between 
objective functions. The acquired information helps the designer to determine the final design from the non-
domination solutions of multi-objective problems and also can be used to identify why the obtained optimum 
solution has a good performance. Furthermore, the information will makes it possible to simplify the design space 
by eliminating design variables which have little effect on the design problem.  

However, as shown in transonic airfoil design case using the adaptive search region method, the acquired 
information depends on the definition of search region. In order to obtain the correct information, the search region 
should be selected carefully.   

As a future work, the method of selecting the data for data mining should be investigated. Results of most data 
mining techniques largely depend on the data they used. For the consistency of information obtained from data 
mining, the robust data selection method is necessary.            
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