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Abstract

A practical inverse design method for supersonic
airfoils/wings has been developed. The method is
based on Takanashi’s iterative "residual-correction”
concept. A geometry that materializes a specified

pressure distribution is sought by solving an
integrodifferential form of the linearized small
perturbation (LSP) equation. The integration is

limited to the Mach forecone from the point of
interest. Several design results are presented.

Nomenclature
) perturbation velocity potential
C, pressure coefficient '
AC C target _ Cpcomputea’
» »
Ax,9) wing surface coordinate
My freestream Mach number
¢ kernel function, Eq. (18)
4- perturbed quantities, 4¢,4Cp, etc.
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7 ratio of specific heats
Re Reynolds number based on root chord
length
a angle of attack
Introduction

With a recent trend of the world wide growth of air
transportation, development of a next generation
supersonic transport (SST) is under consideration in
the Unite States, Europe, and Japan. Although
Concorde, the sole existing SST, is a great
technological achievement, it was not able to achieve
economic success. One of its shortcomings is a low
L/D performance. Its poor L/D has to be
compensated by high fuel burn, which increases the
operating cost. To guarantee economic success of
the next generation SST, a higher L/D ratio is
indispensable. To achieve this goal, a new design
technique for supersonic wings is necessary.

There are several design methods'”*® used for
supersonic wings. Most of these methods consider
only warp optimization by using the linearized
method, however, it is also important to consider
wing thickness control to obtain a wing of high
performance. Especially, the thickness control plays
an important role, such as, for prevention of the
leading-edge separation and for laminar flow control.

To optimize both the warp and thickness of a wing
simultaneously, Kamiya, et al’ suggested an inverse
design method using the Prandtl-Meyer function and
the linearized theory. However, this method is limited
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to two-dimensional design problems. When this
method is applied to a three-dimensional problem,
convergence to a target pressure distribution

" becomes worse because it cannot account for the

three—dimensional effect.

In this study, a three-dimensional supersonic wing
design method which can design both the warp and
thickness at the -same time, is developed. The
present method is extended from Takanashi's inverse
design method® used for the transonic wing design.
Takanashi solved the inverse problem by using the
integral form of the transonic small disturbance
equation with “residual-correction” concept. This
paper will discuss the mathematical formulation of
the present method, followed by several numerical
results. These results will confirm the validity of
this method. '

Design Procedure

The inverse problem for the aerodynamic shape
design is to find a geometry that materializes a
specified  surface pressure  distribution.  The
‘residual-correction’ procedure of finding the
corresponding geometry can be described as follows.
First, a target pressure distribution and an initial
wing geometry is selected. The flow analysis is then
performed for the initial wing geometry to obtain the
surface pressure distribution. The present inverse
design method is decoupled from the flow analysis,
so the any type of analysis, even an experiment, can
be used for the flow analysis. In this paper, the
Euler/Navier-Stokes code is wused. From the
computed and target pressure distributions, the
pressure difference is calculated. Using this pressure
difference as a boundary condition, the geometry
correction is obtained by solving the
integrodifferential linearized small perturbation (LSP)
equation. By modifying the initial geometry with the
geometry correction, a new geometry is produced.
This process will be iterated until 4Cp becomes
sufficiently small. Figure 1 shows the flowchart of
the present inverse design procedure.

Integral Formulation of Inverse Method

In a supersonic flow, the small perturbation potential
equation can be expressed in the linearized form as

(Me=1) $5— b5~ b= 1)
and pressure coefficients on wing surfaces and the
tangency conditions can be written as

Cps(x, ) =—2 ¢3(x, v, £0) @

2

3 fu(x 9
ox
where the subscripts ‘=%’

= ¢-(x, 3, £0) (3)

denote the upper and

lower ~ surfaces of the wing. For brevity, the

Prandtl-Glavert transformation is used in the above
equations as

x=1x, y=9, 2=z, ¢(x,y,z)=#_$(7c,},2),
:L 7 v v
falz,y & fi(x, ») (4)

where A=V M%—1.

The transformed equations are written as

D= Dy~ D=0 (5)
Cbi(x, %) =—28%¢.(x, v, £0) (6)
ﬂ—ib(;’—ﬁ = ¢.(x, v, £0) @)

Suppose the solution of Eq. (5), &(x,y,z), for the
initial geometry Ax,y) is given and the

perturbation, 4¢(x,y, 2), is occurred to this known
flow, Eqgs. (5)-(7) become

Yy Yy
C,,i(x, 2 ) +4C,. (x B) ©
=—280 %, v, £0)+ 4, (x,y, +0)]
of+(x,y) | 0d4f.(x,)
2 + ax (10)

=B oLx, v, 20) + dé,(x, y, +0)]

By subtracting Eqs. (5)-(7) from Egs. (8)-(10), the
perturbation equations are obtained as follows.

40— APy~ 46, =0 (11)
AC»i(x,%’%) =—284¢.(x,y, £0)  (12)

jé%c*ﬂ = 4¢ (x, v, =0) 13)

The solution of Eq. (11), 4, can be derived by
means of Green's theorem®’ :
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Ade(x, y, 2) (14)
=“2?7;ff[<ﬂ¢c<5 7, +0)— 4¢ L& 7,—0))
x ¢(x, v,z €, 1,0)1dédy

+%$ ff[<4¢<f 7+0) —dé(& 7,—0))

X ¢x, v,z &, 1,0))déd;

where

x—&
V(y— ) +(z— §? (15)

The integral surface 1, is the part of z=0 plane

Wx,v,zE 7 §)=cosh !

contained within the Mach forecone from the point

(x,v,2), that is, the area bounded by the line
=—o00 and the hyperbola;
(x—&*—(y— = (z—9*=0 (16)

Namely, the integral surface 7; is inside of the
Mach forecone on the planform. The integral surface

7, on the triangular planform is shown in Fig 2.

To utilize the pressure distribution as a boundary
condition, Eq. (14) is differentiated with respect to x
and by adding the resulting 4¢,(x,y,2) at z=+0 and

z=-0, we obtain

dux,y)=—dw{x,) 17

1 (x— 8 dwE, 7)
+ ==
3 f’l VG- —n"
dulx,y)=d¢,(x,v,+0)+d¢(x,y,—0) (18)
dw(x,y) = A¢Lx, v,+0)—4¢.(x,5,—0) (19

dédy

Similarly, differentiating both sides of Eq. (14) with
respect to z and adding the resulting 4¢,(x,y,2) at

z=++0 and z=-—0, we obtain

dw(x,y)=

1
N o

— du,(x,y) (20)

(x— 8 du,x,)
W (x— 82— (y—n)*

dédy

du(x,9)= 4%, 9, +0)— 4$.(x,5,—0) 2D

dw(x,y) =46 x,y,+0)+d¢.(x,y,—0) (22)

By solving Egs. (17) and (20) with the boundary
conditions Jdu, and du,, the geometry terms dw
and dw, can be obtained. As defined in Egs. (19)
and (22),

derivatives of thickness and camber corrections,
respectively.

dw{x,y) and dw,(x,y) represent the

The integrated value for the thickness correction ,
however, doesn’t have to satisfy the closure
condition at the trailing edge. In this paper, Jw, are

modified so as to satisfy the closure condition.

Modifications are performed according to the
following equation:
mod
dwT* (x, ) IT"EA it (23)
wl &,V dx
= dw(x, y) ——=E — T

where [ is local chord length and ‘dx is chord length
dividled by number of panels at each spanwise
location.

The geometry correction can be computed by

performing the numerical integration in the
x—direction.
Af:(x,9) (24)

=1 [ swe =L |7 awrede

This equation may be contrasted with the camber
design of Ref. 8.

Since Egs. (17) and (20) are based on LSP equation,
they become invalid where the vorticity is generated.
Such regions are typically around the root and tip of
the wing. At the wing root, the bilateral symmetry
is usually assumed for the flow analysis, but

%‘1}% #( when the straight isobar pattern is enforced

for prescribing a pressure distribution for a swept
wing. This breaks the irrotational flow assumption at
the wing root. At the wing tip, on the other hand,
the flow is naturally rotational due to the wing tip
vortex. Therefore, the Egs. (17) and (20) should be
replaced with lower order approximations in those
regions.

dux, y)=—dwlx,y) (25)
dw,(x,y) = — du,(x,y) (26)

These equations are now the supersonic linearized
pressure coefficient equations.

American Institute of Aeronautics and Astronautics



e A s s

Results

To confirm the validity of the present formulation of
the supersonic inverse method, two- and
three-dimensional design results are presented.

Airfoil Design Problem

As a flow analysis code, a Navier-Stokes solver® is
used. This solver adopted a TVD upwind scheme for
the spatial discretization of the convective terms and
the LU-SGS method for the time integration.
Turbulence effects was evaluated by using the
Baldwin~Lomax model.

The computational grid is generated by an algebraic
grid generation code. The two-dimensional C-type
grid contains 191 cells in the streamwise direction
and 91 cells in the normal direction.

Case 1: Reconstruction of a Known_Airfoil

The pressure distribution of NACA-1204 airfoil at a
flow condition of Mw=2.0, @=2" and Re=1.45X10" is
obtained by using the Navier-Stokes solver and
designated as the target pressure distribution. As the
initial geometry, NACA-0003 airfoil is used. Actually,
in the two dimensional inverse design, there is no
need to performed the integration expressed in Egs.
(18) and (23) along the spanwise direction but in
this paper to validate the mathematical formulation of
the supersonic inverse method prescribed above, the
‘infinite wing’ concept is adopted. Thus, the
integrations in Egs. (18) and (23) are performed on
the rectangular planform shown in Fig. 3. 50 panels
used for both streamwise and spanwise directions.

Figure 4 shows the design result of this case. Both
the geometry and pressure distribution are converged
to those of NACA-1204 airfoil after 4 iterations.

Case 2: Changing Angle of Attack
The pressure distribution of NACA-66003 airfoil at

the same flow condition as Case 1 is obtained by
the Navier-Stokes analysis and designated as the
target pressure distribution. In this case, the flow
condition is changed to « =0.

The design result is shown in Fig. 5. The designed
airfoil is inclined in 2 degrees and its pressure
distribution is coincided with that of NACA-66003
air;foil in a flow at M»=2.0, ¢=2" and Re = 145X
10

Wing Design Problem

The Euler code is used for the three-dimensional
flow analysis for a wing. The spatial discretization

4

and time integral method are the same as used in

the two-dimensional problem. For a computational

grid, the C-H topology is used, applying the
two-dimensional grid generation at each spanwise
section. The grid consists of 191X84%33 points in
the streamwise, spanwise and normal directions,
respectively.

The planform used in this three-dimensional wing
design problem is shown in Fig. 6. This planform is
the so called O-th baseline configuration of the
NAL(National Aerospace Laboratory) SST program.
The leading-edge sweep angle is about 70° and the
leading- and trailing-edge kinks are Iocated at 43.96
% and 40% spanwise sections, respectively. For
inverse design, there are 50 panels in streamwise
direction and 67 panels in spanwise direction.

The target pressure distribution is obtained from the
untwisted wing based on NACA-1204 airfoil in an
inviscid flow at Me = 2.0 and ¢ = 2° . The initial
wing is obtained from NACA-0003 airfoil.

Figure 7 shows comparison of surface pressure
distributions at six spanwise sections among the
target, initial, and designed wings after 6 iterations.
Except at the 90% section, pressure distributions of
the designed wing coincide with those of the target
wing. Discrepancies near the tip is attributed to the
invalidity of the irrotational assumption of the
original LSP equation there.

To improve the overall convergence, the
integrodifferential equation is replaced with the
supersonic linearized pressure coefficient equation
near the root and tip sections where the original
LST equation does not hold.

The corresponding design resuits are shown in Fig.
8. The designed and target pressures coincide with
each other from the root to the tip better. To check

the convergence, residual pressure differences ( 4Cp)
averaged at each spanwise section are plotted in Fig
9. As shown in the figure, the integral equation
derived here gives the best convergence in the
midspan from 30% to 70% section. On the other
hand, near the root and tip, it gives the worst
convergence due to the irrelevant physics. The lower
order correction based on the supersonic linearized
pressure coefficient equation is shown to give the
better convergence there. Thus, by switching the
both equations, the overall convergence is greatly
improved.
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Conclusion & Future Works

A new inverse design method for> wings of SST has
been developed. Takanashi's transonic inverse
method is extended to the supersonic wing design.
By solving the integrodifferential equation iteratively,
corresponding  geometry ~ which  materializes a
specified pressure distribution can be found. In case
of three-dimensional problems, the present method is
revised by using the supersonic linearized pressure
coefficient eguation near the wing root and tip where
the irrotational flow assumption does not stand. The
two- and three-dimensional design results confirmed
the validity of this method.

To use this design method effectively, the target
pressure distribution must be selected carefully. The
design objectives should be translated into the
pressure distribution. The determination of an optimal
target pressure distribution’ will be studied in future
for the supersonic cases.
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