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Abstract. Diesel engine combustion chamber which reduces exhaust emission has been 
designed using CFD analysis and optimization techniques. In order to save computational 
time for design, the Kriging model, one of the response surface models, is adopted here. For 
the robust exploration, both the estimated function value of the model and its uncertainty are 
considered at the same time. In the present problem, the k-means method  is used to limit a 
number of additional sample points to a reasonable level. Among the additional sample points, 
two combustion chamber shapes dominate the baseline configuration in terms of all objective 
functions. Compared with the previous optimization with the evolutionary algorithm, its 
computational time for design was cut by 95%. The results indicate that the present method is 
a practical approach for real-world applications. 

 
 

 
1 INTRODUCTION 

The market share for diesel car has been increased in European countries because of its 
high thermal efficiency and low carbon dioxide emissions. The trend is expected to be 
continued in the future. However, the problems with diesel engine are its higher Particulate 
Matter (PM) and Nitrogen Oxide (NOx) emissions. The European environmental group 
demands more strict emission standard than now. In EURO5, which will be applied from 
2009, it requires a further 80% reduction in PM and a further 20% reduction in NOx. In order 
to cope with this strict emission standard, green engine which reduces exhaust emission 
should be developed. Generally, NOx is produced when combustion occurs at high 
temperatures because the nitrogen contained in the combustion air will also react with the 
available oxygen, and soot is produced as a byproduct of incomplete combustion when 
oxygen is insufficient or temperature of too low. One idea of reducing NOx is to mix high 
temperature burn-gas with cold air in combustion chamber as quickly as possible, and cool 
down the local high temperature region, as shown in Fig. 1. By doing this, NOx emission can 
be reduced without any additional increase of soot. The mixture of burn-gas and cold air can 
be activated by generating swirl flow in the combustion chamber. The flow in the combustion 
chamber largely depends on the shape of chamber. Consequently, the exhaust emission can be 
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reduced effectively by designing the geometry of combustion chamber1. 

 
Figure 1: NOx reduction mechanism  

In this study, the combustion chamber of diesel engine is designed by using CFD analysis 
and optimization techniques. However, analysis of engine combustion using CFD requires a 
lot of computational time. It is not so efficient to couple the time-consuming CFD analysis 
code with evolutionary algorithm.       

For the efficient design, a Kriging model2, one of the Response Surface Models (RSM), is 
adopted for optimization. The Kriging model developed in the field of spatial statistics and 
geostatistics, and predicts not a functional value itself but the distribution of functional value 
at the unknown point. From this distribution, it is possible to predict both the function value 
and its uncertainty at the same time. The uncertainty information is very useful when using 
the RSM in optimization. One of the drawbacks of using RSM in optimization is that it is apt 
to miss the global optimum because estimation value obtained with RSM includes errors at an 
unknown point. By considering the estimated function value and its uncertainty 
simultaneously, robust exploration of the global optimum and improvement of the model are 
possible.3 The method was successfully applied to single objective optimization design.4, 5  

For the multi-objective problem, Knowles suggested ParEGO6 (Pareto Efficient Global 
Optimization) which converts all objective functions into a single objective function by using 
a parameterized weighting vector. However, the result of utility function method largely 
depends on the weighting vector. The present author suggested EGOMOP7 (Efficient Global 
Optimization for Multi-Objective Problem) in which each objective function is converted into 
its EI, and this value is used as fitness in multi-objective optimization problem. Furthermore, 
the k-means clustering method is adopted for the efficient selection of additional sample 
points in high dimensional problem.  

In this study, the optimization was performed with the following four objective functions: 
soot, NO, CO and thermal efficiency. Among the sample points, two solutions dominate the 
baseline configuration in terms of all objective functions. The results show the usefulness of 
the present method.  
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2 KRIGING MODEL 
The present Kriging model expresses the unknown function y(x) as:  

)()( xx Zy += μ  (1) 
where x is an m-dimensional vector (m design variables), μis a constant global model, and 
Z(x) represents a local deviation from the global model. In the model, the local deviation at an 
unknown point (x) is expressed using stochastic processes. Sample points are interpolated 
with the Gaussian random function as the correlation function to estimate the trend in the 
stochastic processes. The correlation between Z(xi) and Z(xj) is strongly related to the distance 
between the two corresponding points, xi and xj. In the Kriging model, a specially weighted 
distance is used instead of the Euclidean distance because the latter weighs all design 
variables equally. The distance function between the point at xi and xj is expressed as: 
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where θ k (0≤θ k ≤∞ ) is the kth element of the correlation vector parameter, θ . The 
correlation between the points, xi and xj, is defined as: 

( )[ ] [ ]),(exp),( jiji dZZCorr xxxx −=  (3) 
The Kriging predictor is  

)ˆ(ˆ)(ˆ 1 μμ 1yRrx −′+= −y  (4) 
where μ̂  is the estimated value of μ, R denotes the n×n matrix whose (i, j) entry is 
Corr[Z(xi), Z(xj)], r is the vector whose ith element is 
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and y=[y(x1),·······,y(xn)], and 1 denotes an n-dimensional unit vector. 
The unknown parameter, θ , for the Kriging model can be estimated by maximizing the 

following likelihood function: 
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Maximizing the likelihood function is an m-dimensional unconstrained non-linear 
optimization problem. In the present study, a genetic algorithm was adopted to solve this 
problem. For a givenθ , μ̂ and can be defined as follows: 2σ̂
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The accuracy of the prediction value depends largely on the distance from sample points. 
Intuitively, the closer point x is to the sample points, the more accurate the prediction, , 
becomes. This is expressed in the following equation: 

)(ˆ xy
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where s2(x) is the mean squared error at point x, indicating the uncertainty of the estimated 
value. 

3 EXPLORATION OF OPTIMUM WITH KRIGING MODEL 
Once the approximation model is constructed, the optimum can be explored using an 

arbitrary optimized on the model. However, there is a possibility of missing the global 
optimum because the estimated value includes uncertainty in it.  

In Fig. 2, the solid line is for the real shape of the objective function and the dotted line is 
for the approximation model. The minimum point on the approximation model is located near 
x = 9, whereas, the real global minimum of the objective function is situated near x = 4. 
Exploration of the global minimum using the approximation model tends to result in the local 
minimum. For a robust search of the global optimum in the approximation model, the 
uncertainty information is very useful. 

           
Figure 2: Real objective function and approximation          Figure 3: Estimated value and standard model of 
model                                                                                     Kriging model 

Figure 3 shows the estimated value and the standard error (uncertainty) of the Kriging 
model. Around x = 9.5, the standard error of the Kriging model is very small because there are 
many sample points around this point. Consequently, the confidence interval is very short as 
shown in Fig. 3. On the other hand, the standard error around x = 3.5 is very large due to the 
lack of sample points there. Consequently, the confidence interval at this point is very wide. 
The lower bound of this interval is smaller than the current minimum in the Kriging model. 
As a result, this point has some probability of being superior to the current minimum.  

The probability of being superior to the current optimum can be expressed by the criterion 
of expected improvement (EI). In minimization problems, EI can be calculated as follows on 
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the Kriging model: 
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where φis the probability density function representing uncertainty about y. By selecting the 
maximum EI point as additional sample points for the Kriging model iteratively, robust 
exploration of the global optimum is possible. The overall procedure is shown in Fig. 4.  
 
1. Select initial sample points using arbitrary space filling method.  
2. Construct Kriging model for an objective function. 
3. Explore the maximum EI point using GA 
4. Add the maximum EI point as additional sample  
5. Iterate 2-4 until termination criterion (maximum number of sample points or tolerance of 

uncertainty) is met. 
 

 
Figure 4: Procedure of optimization using the Kriging model 

4 EXTENSION TO MULTI-OBJECTIVE PROBLEM 
In this study, EGOMOP (Efficient Global Optimization for Multi-Objective Problem) 

which converts each objective function into its EI, and uses these EIs as fitness of multi-
objective optimization problem is applied. While the single objective problem obtains the 
maximum EI point, the multi-objective problem obtains the Pareto solutions of EIs. From 
these Pareto solutions, several points should be selected as additional sample points.  

However, even if we select only extreme Pareto solutions and middle points, a number of 
additional sample points will grow increasingly in case of high dimensional problems, as 
shown in Fig. 5.  
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Figure 5: A number of additional sample points 

In order to limit a number of additional sample points to a reasonable level, the k-means 
method8, one of the clustering methods9 is adopted here. The k-means method groups all 
members into a given number of clusters based on the Euclidean distance. Once the clustering 
is over, centers of clusters are selected as additional sample points. The overall procedure of 
the present method is shown in Fig. 6.             

 
Figure 6: Overall procedure of the present method 

5 RESULTS 

5.1 Definition of design problem and evaluation  
The objective functions used in this study are as follows: 
1. Soot minimization 
2. Thermal NO minimization 
3. CO minimization 
4. Thermal efficiency maximization 
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The combustion chamber shape is body of rotation and half of its cross-section is defined 
with 10 design variables as shown in Fig. 7. Injection angle is also defined as design variable 
because the diesel engine combustion largely depends on the injection angle. Detailed engine 
geometry and operating condition are shown in Table 1. 

  
Table 1 Engine configuration and operating condition 

Bore×Stroke Φ86mm×86mm 
Compression ratio 16.9 

Nozzle type Φ0.135×6 holes 
Engine speed  2000rpm 

Injection timing 315.1～318.2 (first) 
362.1 ～372.3 (second)

Pressure 98 
Swirl ratio 2 

EGR  25% 
 

 

Figure 7: Definition of design variables 

Under this condition, fully one cycle, from 180ﾟ to 450ﾟ crank angles, is evaluated with 
GTT code developed by Wakisaka et al.10-12 This code is based on the finite-volume method 
and boundary fitted grid, and takes into accounts the fluid flow, fuel spay, combustion, and so 
on. The spray model is based on the Discrete Droplet Model (DDM) and includes sub-models 
for break up, collision and merger. Ignition is achieved Livengood integration13. In the 
combustion model, overall-reaction formula14 associated with the equivalence ratio is used for 
gas composition calculation. The NOx model15 dealing with thermal-NO and soot model16 
dealing with both formation and oxidation are also included. The validity of the GTT code has 
been confirmed by real engine designs in the industry.   
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5.2 Results of optimization 
48 initial sample points are selected for construction of the Kriging model using the Latin 

Hypercube sampling17, and 6 iterations of design procedure shown in Fig. 6 are performed 
with 43 additional sample points. All sample points are projected onto the two-objective 
function planes in Fig. 8. Compared with the initial sample points, the additional sample 
points appear in the optimum direction. It means that the present algorithm works effectively. 
In Fig. 8, NO-CO, NO-Thermal efficiency shows the trade-off relation.  

       
(a) Soot-NO                                       (b) Soot-CO                             (c) Soot-Thermal efficiency 

       
(d) NO-CO                          (e) NO-Thermal efficiency                     (f) CO-Thermal efficiency 

Figure 8: Projection of sample points onto two-objective planes 

Among 43 additional sample points, two solutions (Opt1 and Opt2) outperform the 
baseline configuration in terms of all objective functions. Temperature distribution of these 
two solutions is compared with that of the baseline configuration in Fig. 9. Compared with the 
baseline configuration, the lower center part of these solutions is more inflated to the wall side. 
It may push the cold air in the center of the combustion chamber to the wall side and 
generates the swirl flow. This swirl flow promotes a mixture of burn-gas and cold air and cool 
down the high temperature region. Consequently, this cooling effect reduces the exhaust 
emission. Iso-surfaces of soot and thermal NO emissions are shown in Figs. 10, 11, 
respectively. Soot and thermal NO emissions of the designed configurations are less than 
those of the baseline configuration. Table 2 shows the performance improvements of the 
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designed combustion chambers. In this study, total 91 GTT evaluations were conducted. It is 
about one twentieth of the previous optimization using evolutionary algorithm with GTT 
evaluation. 

Table 2: Performance improvements to the baseline configuration 

  Soot NO CO Thermal efficiency 

Opt. 1 17.98% 0.4277% 31.05% 0.63% 

Opt. 2 15.49% 6.12% 29.09% 1.56% 

 

   
             

(a) Baseline                                        (b) Opt. 1                                           (c) Opt. 2 

Figure 9: Comparison of temperature distributions 

     

(a) Baseline                                        (b) Opt. 1                                           (c) Opt. 2 

Figure 10: Comparison of iso-surfaces of soot 

     

(a) Baseline                                        (b) Opt. 1                                           (c) Opt. 2 

Figure 11: Comparison of iso-surfaces of thermal NO 
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6 CONCLUSIONS 
In this study, diesel engine combustion chamber which reduces exhaust emission has been 

designed using CFD analysis and optimization techniques. In order to save the computational 
burden of optimization, the Kriging model, one of the response surface models, was adopted. 
The points which have a large probability of being optimum are estimated using the Kriging 
model, and used as additional sample points to update the Kriging model. For the efficient 
selection of additional sample points, the k-means method, one of the clustering techniques, 
was also used here. After 43 sample points are added, two solutions outperform the baseline 
configuration in terms of all objective functions. Compared with the previous optimization 
with the evolutionary algorithm, its computational time for design was reduced by 95%. The 
results indicate that the present method is a practical approach for real-world applications.    
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