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Abstract. A multi-objective design exploration for a three-element airfoil consisted of a slat, 
a main wing, and a flap was carried out. The lift curve improvement is important to design 
high-lift system, thus design has to be performed with considered multi-angle. The objective 
functions considered here are to maximize the lift coefficient at landing and near stall 
conditions simultaneously. Kriging surrogate model which was constructed based on several 
sample designs is introduced. The solution space was explored based on the maximization of 
Expected Improvement (EI) value corresponding to objective functions on the kriging models. 
The improvement of the model and the exploration of the optimum can be advanced at the 
same time by maximizing EI value. In this study, a total of 90 sample points are evaluated 
using the Reynolds averaged Navier-Stokes simulation (RANS) for the construction of the 
kriging model. In order to obtain the information of the design space, two data mining 
techniques are applied to design result. One is functional Analysis of Variance (ANOVA) 
which can show quantitative information and the other is Self-Organizing Map (SOM) which 
can show qualitative information.  
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1 INTRODUCTION 

A civil aircraft wing is generally designed by considering about a cruise condition. On the 
contrary, when an aircraft lands or takes off, its wing should gain enough lift even at low-
speed. In such condition, high-lift system which can increase the wing load at low-speed is 
required. Thus, high-lift system is one of the main interests in aircraft design due to its effect 
on landing/ take-off performances, and pay-load capacity of an aircraft.  

One of a typical high-lift system is a multi-element wing. Flowfield around a multi-
element wing has a complex physics caused by the interaction of each element. 1, 2 The 
interactions between the design and its physics have to be examined closely to design high 
efficient high-lift system. 

In order to obtain the information of the relationship between the design space and the 
solution space for realistic design, high quality solutions have to be collected in the multi-
objective design. In Ref. 3, Kriging surrogate model was introduced and perform the efficient 
global optimization. In Ref. 5, Analysis of Variance (ANOVA) and Self-Organizing Map 
(SOM) were applied to the aerodynamic design exploration. In Ref. 6, these data-mining 
techniques are coupled with Kriging model and high efficient design is performed. Moreover, 
these techniques are also applied to multi-disciplinary optimization (MDO), successfully. 7 

In authors study, Kriging surrogate model and MOGA (multi-objective GA) was applied 
to multi-objective design problem for a high-lift airfoil. The three-element airfoil as shown in 
Fig. 1 is used as a baseline setting. Generally, a slat increases the stall angle and a flap 
produces an upward shift in a lift curve as shown in Fig. 2 1, thus multi-angle of attack should 
be considered. In this study, the multi-objective design of the three-element high lift system 
was defined, where objective functions are to maximize Cl at the angle of attack of 8 degree 
which corresponds to landing condition and 20 degree which corresponds to near stall angle 
and the design variables are element’ settings. This study obtained many solutions which 
achieve higher solution than the baseline settings and Kriging surrogate models which 
correspond to each objective functions are constructed. 

In this study, data mining techniques are applied to the sample designs which were 
collected previous study to obtain circumstantial information about the relation between the 
design space and the solution space. To obtain the quantitative information, ANOVA is 
applied and to obtain the qualitative information, SOM is applied. Using these results, the 
effect of the slat setting and the flap setting are investigated closely using RANS. 
 

 
 
 
 
 

Figure 1 :Baseline airfoil and elements’ settings. 
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2 FORMULATION 

2.1 Flow Solver 

Aerodynamic performances of sample designs for Kriging models are evaluated using a 
structured multi-block flow solver, UPACS (Unified Platform for Aerospace Computational 
Simulation) 9. UPACS is developed at JAXA as a common-base code for aerodynamic 
researchers.  

In this study, RANS is applied with Spalart-Allmaras turbulence model. Flux was 
evaluated by Roe’s flux difference splitting with MUSCL for third-order spatial accuracy. The 
computational grid is decomposed into 35 sub-domains. Number of cells is about 10,000. To 
reduce mesh generation time, the deforming mesh method 10 is applied to deform the mesh 
around the baseline setting. Mach number is set to 0.2 and Reynolds number is set to 
1.24×107.  

2.2 Design Variables 
As shown in Fig. 3, the overlap, the gap, and the deflection angle between elements are 

used as the design variables. Each design variable in limited as follows: 
-0.01 c ≤ overlapslat ≤ 0.01 c 

0.01 c ≤ gapslat ≤ 0.04 c 
20.0 ≤ θslat ≤ 30.0 (degree) 

-0.01 c ≤ overlapflap ≤ 0.01 c 
0.01 c ≤ gapflap ≤ 0.03 c 
30.0 ≤θflap≤40.0 (degree) 

 
Figure2 :High-lift system effect on airfoil lift and ideal design. 
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where c is the chord length of airfoil when flap and slat are retracted into the main element. 

θslat 

overlapslat -  + gapslat 

 θflap 

overlapflap 

-  + 

gapflap 

 
Figure. 3 Design parameters. 
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2.3 Objective functions 

In this study, the design problem has two objective functions. The objective functions 
considered here are to maximize lift co-efficient at angle of attack of 8 degree (Cl 8) and 20 
degree (Cl 20). Angle of attack of 8 degree is assumed the angle of attack at landing condition 
and 20 degree is assumed the stall angle decided from Cl -α of the baseline setting as 
discussed in Ref. 8. 

 

2.4 Procedure of Multi-objective Design Exploration 

The procedure of the present design (Fig. 4) is as follows: First, N samples which are 
decided by Latin hypercube sampling 11 which is one of the space filling methods are 
evaluated using RANS and Kriging surrogate models are constructed. Then, m EI maximum 
points are added as sample points, and model accuracy is improved by constructing Kriging 
models using N+m samples. This process is iterated until improvement of objective functions 
becomes little. Finally, data mining technique can be applied to obtain the information of the 
design problem. The detail of each procedure is described in the following sections.  

 

2.4.1 Kriging model 

Kriging model 4 expresses the value y(xi) at the unknown design point xi as: 

    )()( ii xxy εμ +=                                                  (i = 1, 2, …., m)                          (1) 

where, m is the number of design variables, μ is a constant global model and ε(xi) represents a 
local deviation from the global model. The correlation between ε(xi) and ε(xj) is strongly 
related to the distance between the two corresponding point, xi and xj. In the model, the local 
deviation at an unknown point x is expressed using stochastic processes. Some design points 
are calculated as sample points and interpolated with Gaussian random function as the 
correlation function to estimate the trend of the stochastic process.  

 

2.4.2 Improvement of Kriging model and selection of additional samples 

Once the models are constructed, the optimum point can be explored using an arbitrary 
optimizer on the model. However, it is possible to miss the global optimum, because the 
surrogate model includes uncertainty at the predicted point. This study introduced EI values 3, 

4 as the criterion.  
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EI for present maximization problem can be calculated as follows: 

                                                                                                                                   (2) 

where fmax is the maximum value among sample points and ŷ is the value predicted by Eq. 
(1) at an unknown point x. Φ and   are the standard distribution and normal density, 
respectively. EI consider the predicted function value and its uncertainty, simultaneously. 
Thus, the solution that has a large function value and a large uncertainty may be a promising 
solution. Therefore, by selecting the point where EI takes the maximum value, as the 
additional sample point, robust exploration of the global optimum and improvement of the 
model can be achieved simultaneously because this point has a somewhat large probability to 
become the global optimum. To apply multi-objective problem, this study considers two EI 
values based on two kriging models; EICl8 and EICl20. Eq. (2) can be written for the present 
design problem as follows: 

maximize:                                                                                       

                                  (3) 

maximize: 

 

Maximizing these objective functions, non-dominated solutions between EICl8 and EICl20 
can be obtained. Among these non-dominated solutions, three points are selected as additional 
sample points (Fig. 7): i) the point whose EI values of Cl8 is maximum, ii) the mid point in the 
non-dominated solutions and iii) the point whose EI values of Cl20 is maximum. Therefore, 
the value of m becomes 3 in this study. 

 

2.4.3 Data mining technique 

2.4.3.1 Analysis of Variance: ANOVA 

An ANOVA 12 which is one of the data mining techniques is carried out to differentiate 
the contributions to the variance of the response from the model.  

To evaluate the effect of each design variable, the total variance of the model is 
decomposed into that of each design variable and their interactions. The decomposition is 
accomplished by integrating variables out of the model ŷ. The main effect of design variable 
xi is as follows: 

μμ −≡ +−∫ ∫ niinii dxdxdxdxxxyx ,..,,,...,),.....,(ˆ)( 1111L                                                   (4) 
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Two-way interaction effect xi and xj is written as: 
μμμμ −−−≡ +−+−∫ ∫ )()(,..,,...,,,...,),.....,(ˆ)( 111111,, jjiinjjiinjiji xxdxdxdxdxdxdxxxyx L  

(5) 
where, total mean μ is as follows:  

nn dxdxxxy ,.....,),.....,(ˆ 11∫ ∫≡ Lμ                                                                                        (6) 
The variance due to the design variable xi is 
       [ ] iii dxx

2
)(∫≡ με                                                                                                                

(7) 
The proportion of the variance due to design variable xi to total variance of model can be 

expressed as: 

[ ]∫ ∫
≡

−⋅⋅⋅ nn dxdxxxy
p

...),....,(ˆ 1
2

1 μ

ε
                                                                                              (8)  

The denominator of Eq. (8) means variance of the model.  The value obtained by Eq. (8) 
indicates the sensitivity of the objective function to the variation of the design variable. 
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2.4.3.2 Self-organizing Map: SOM 

SOM is an unsupervised learning, nonlinear projection algorithm 13 from high to low 
dimensional space. This projection is based on self-organization of a low-dimensional array of 
neurons. The weight between the input vector and the array of neurons are adjusted to 
represent features of the high dimensional data on low-dimensional map, in the projection 
algorithm. The closer two patterns are in the original space, the closer is the response of two 
neighboring neurons in the low-dimensional map. Thus, SOM reduces the dimension of input 
data while preserving their features. Using SOM, qualitative information can be obtained. 

In this study, commercial software Viscovery® SOMine14 Produced by Eudaptics GmbH 
is used. SOMine creates a map in a two dimensional hexagonal grid. Starting from 
multivariate data, the neurons on the grid gradually adapt to the intrinsic shape of the data 
distribution. Since the order on the grid reflects the neighborhood within the data, features of 
the data distribution can be read off from the emerging map on the grid. The trained SOM is 
systematically converted into visual information. 

It is efficient to group all neurons by the similarity to facilitate SOM for the qualitative 
analysis, because number of neurons on the SOM is large is large as a whole. This process f 
grouping is called ‘clustering’. Hierarchical agglomerative algorithm is used for the clustering 
here. First, ach node itself forms single cluster, and two clusters, which are adjacent in the 
map, are merged in each step. The distance between two clusters is calculated by using the 
SOM-ward distance. The number of clusters is determined by the hierarchical sequence of 
clustering. A relatively small number of clusters are used fir visualization, while a large 
number of clusters are used for the generation of weight vectors for respective design 
variables. 



M. Kanazaki, K. Tanaka, S. Jeong, and K. Yamamoto. 

 

 

3 RESULTS 

3.1 Design result 

Figure6 shows the solutions obtained based on the present method. From this figure, the 
solutions obtained from the initial sampling distributed uniformly in the solution space, on the 
other hand, the solutions obtained from 15th-20th additional samplings achieve the better 
performance than that of the initial samplings. The non-dominated front gradually advances to 
the optimum direction as the improving process is preceded. These results show that the 
present method selects the additional samples properly. 

 

 

 

 

 

 

 

Figure4 Procedure of multi-objective  
global exploration. 

Selected samples 

 
Figure5 Selection of additional samples 
based on EI maximization. 
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3.2 Data Mining Result 

3.2.1 Result of ANOVA 

Total variances of models were decomposed into the variance due to each design variable. 
The proportion to the total variable of design variables and their interactions are shown in Fig. 
16. According to Fig. 16(a), the flap setting gives over 70% effect on the Cl8. Moreover, 
according to this figure, the two-way interaction between overlapflap and gapflap has a large 
effect on Cl8. This result suggests that overlapflap and gapflap should be designed with 
considering their interaction carefully. Besides, θflap has a relative small effect because the 
maximum point of Cl8 existent over the upper bound of θflap (See Fig. 8(b)). Generally the 
design space should be adapted in such case, however, the design space was determined based 
on practical use in this case. Therefore, elements’ settings should design in this design space. 
According to Fig. 16(b), the slat and the flap setting both give effect on the Cl20. This result 
suggests that the proper setting of elements for Cl20 is more difficult than that for Cl8. 
According to this figure, the gap of flap is also important design variable for each objective. 
Generally, a slat is set to increase stall angle, however, this result suggest that the flap setting 
has also important to the aerodynamic performance near stall condition. Not only slat but also 
flap should be designed carefully for near stall condition. 

 

3.2.2 Result of SOM 

To obtain quantitative information among the design space and the solution space from 
design results, SOM is employed. Once Kriging models are constructed, function’s value at 
unknown points can be predicted. Using these Kriging models, the non-dominated solutions 
can be also obtained. Using sample points collected by the prediction of the non-dominated 
solutions, clustering is performed by SOM.  

Figure9 (a) and (b) show SOM colored by each objective functions. In Fig (a), good Cl8 
performances are clustered in right hand side on the map and bad Cl8 performance are 
clustered in left hand side. On the other hand, in Fig (a), good Cl20 performances are clustered 
in left hand side on the map and bad Cl8 performance are clustered in left hand side. This 
result suggests that two objective functions considered in this study have a strict trade-off. 
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Figure10 shows SOM colored by design variables. The SOM by θ flap is thoroughly 
colored by red. It suggests that many solutions on the trade-off have to have highest value of 
θflap in the design space. The SOM by θslat is thoroughly colored by green. It suggest that θ
slat have to be mid-value (about 23 degree in this study) on the design space to obtain better 
solutions. The SOM by overlapslat is thoroughly colored by blue. It suggests that overlapslat 
have to be minimum value on the design space. Other maps are spotted patterns. It suggests 
that their design variables have interaction among other design variables. 

3.2.3 Slat effect 
Generally, they say that the slat has an influence on high angle of attack and the flap has an 

influence on low angle of attack. However, according to ANOVA result shown in 3.2.1, the 
interaction between the slat and the flap setting has an effect on Cl20. To invest the slat effect 
and its interaction with the flap, the slat only setting are designed by the procedure expressed 
in 2.4. Figure11 shows the comparison of Slat-Flap design and Slat only designs (7th 
samplings). According to this result, slat can only improve the lift at high angle of attack. It is 
agree with the general theory about high-lift airfoil. However, many solutions which obtained 
by Slat-Flap design achieve better Cl20 than solutions which obtained by Slat only design. 
This result suggests that the flap can also improve lift at high angle of attack and they have 
interaction. 

 

3.2.4 Flap effect 
According to SOM result, flap deflection angle of many solutions achieving higher Cl is 

near upper bound (40 degree) in the design space. To invest the highest Cl obtained by flap 
deflection angle, the deflection angles, 40, 45, and 50 degree which out of design range are 
also calculated by RANS. Figure12 shows Cl8-flap deflection angle. According to this result, 
Cl8 shows maximum value at flap deflection angle of 40-45 degree. This result suggests that 
the flap deflection angle should be less than 45 degree and the high-lift airfoil should stall if 
flap deflection angle becomes over 45 degree. 
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(a)                                                                                  (b) 

Figure8 Total proportion to the total variance of models: (a) Cl8, (b) Cl20. 
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Figure6 Sample points obtained based on EI maximization. 
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Figure10 SOM colored by design variables. 

    
(a)                                                                                  (b) 
Figure9 SOM: (a) colored by Cl8, (b) colored by Cl20. 
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4 CONCLUSIONS 
Multi-objective design exploration for the elements’ settings of the high-lift airfoil 

consisted of a slat, a main wing, and a flap was performed. There were two objective 
functions: maximizing lift coefficient at a landing condition (Cl8), maximizing lift coefficient 
near stall condition (Cl20). Flowfields were simulated by solving the Navier-Stocks equations 
with Spalart-Allmaras turbulent model using the multi-block structured grid method. The 
computational grids were deformed automatically for each design. 
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Figure12 Effect of flap deflection angle 
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Figure11 The comparison of Slat-Flap design and Slat design. 
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 In this study, the objective functions, Cl8 and Cl20, were transformed to the corresponding 
EI values on the kriging model and global optimization was performed based on maximizing 
their values. Using kriging surrogate model, the computational cost can be reduced and EI 
value permit to carry out high efficient design on the Kriging model. The resulting designs 
were also used as the additional samples to update the Kriging models. 

 Through the present method, the solutions based on the EI maximization advanced to the 
optimum direction in the solution space. As the result, element settings that give higher 
performance than that of baseline were successfully obtained. This result suggests that the 
present method can be applied to the multi-objective problem while reducing computational 
time drastically. 

In order to obtain the information about design space, ANOVA which produces 
quantitative information and SOM which produces qualitative information by projecting the 
multi-dimensional data into two dimensional data are applied to the sampling result. This 
result shows the useful information for the design. From their data mining results, slat and 
flap effect are studied closely. According to these results, not only the slat but also the flap 
has to be designed carefully to obtain higher Cl20. To obtain higher Cl8, the flap deflection 
angle has to be decided with considering stall at the flap. 
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