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Abstract. In this study, design of a formation of three supersonic aircrafts is carried out.

The objective is to minimize the total wave drag of the formation, and to maximize the

separation of the aircrafts for safety. Kriging has been used to search for better formations

in a limited amount of computation. Results show a improvement in the objectives with

each iteration step, and good agreement was obtained between past studies and trends of

the generated solutions.
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1 INTRODUCTION

In the past 50 years, many attempts have been made to realize commercially practical
civil supersonic transports. The two major problems that have prevented supersonic
commercial transportation are wave drag and sonic boom. Wave drag, which is the
dominating component of drag at supersonic speeds, leads to a deterioration in cruise
efficiency. And sonic booms have a problem of public acceptance.

Many attempts have been made to minimize the wave drag and the sonic boom via
aircraft shape optimization. However, results have shown a strong trade-off between
wave drag and sonic boom, making it impossible to minimize wave drag and sonic boom
simultaneously.

As a different approach to overcoming these problems, the use of formation flying
in supersonic speeds for the simultaneous reduction of wave drag and sonic boom, was
proposed.[1]

When an aircraft flies through the air at supersonic speeds, they leave momentum in
the air behind them. This is the cause of wave drag. Wave drag of the following aircraft
is reduced by collecting this momentum as pressure gradient.

The reduction of sonic boom of the fleet will be achieved by virtual elongation. It is a
well known fact that the pressure signature of the sonic boom is dependent on the overall
length and the area distribution of the aircraft. This area distribution is defined by a
sweep of a plane inclined downward at the Mach angle. If the aircrafts are placed in a
way such that the area distribution of the aircraft are clustered together, this will result
in an elogated pressure wave, consequently reducing the boom intensity.

In the previous study,[1] sensitivity analysis has been carried out on two aircraft for-
mations. In this case, the flow pattern was simple and intuitive, and the formations in
the analysis were generated from intuition on the flow field.

In the current study, the objective is to gain insight on the drag reduction of three
aircraft formations. The flow patterns are expected to be more complicated and less
intuitive in three aircraft formations, making it impractical to generate the formations
from intuition. Therefore, in this study, design will be carried out on three aircraft
formations in a more objective manner.

For objective design, optimization using Kriging is carried out. Kriging was chosen
taking into account the fact that expensive Euler computations are used for the flow
analysis. This method makes it possible to optimize the formation to a certain level in a
limited amount of computation.

2 PROBLEM DEFINITION

In this study, the objectives are chosen to be the maximization of the total L/D of the
formation and the maximization of minimum of the separations between the aircrafts. The
first objective is considered for improving the cruise efficiency, and the second objective
is considered to maximize the safety and the tolerance of the position keeping.

2



Yuichiro Goto, Shinkyu Jeong, Shigeru Obayashi and Yasuaki Kohama

The design variables are the coordinates of the two following aircrafts.
In the coordinate system used in this analysis, x is in the freestream direction, y is out

towards the right wing tip, and z is upward. The origin of the coordinate system is located
at the half chord position along the centerline of the leading aircraft. The coordinates are
normalized by the root chord of the aircraft.

The previous study has shown that shock interaction is the most important physics
in the drag reduction.[1] Therefore, a skewed cylindrical coordinate expression, which
effectively extracted the physics, is used as the design variables that define the relative
position of the aircrafts.

In this definition, the position of the following aircraft is expressed using three pa-
rameters r, θ and xµ. The conversion from the cylindrical coordinate expression to the
Cartesian expression is given by,

x = xiCone
+ xµ + r/ tanµ

y = yiCone
+ r sin θ

z = ziCone
+ −r cos θ

First of all, r is a parameter to express how far away along the Mach cone, the following
aircraft is located from of the leading aircraft. However, the value of r is not defined as
the distance along the Mach cone, but as the distance between the longitudinal axes of
the leading and following aircrafts. Next, θ is the azimuthal position in the yz plane,
defined in proper right hand coordinate system, and θ = 0◦ is defined to be pointing
downwards in the −z direction. And finally, xµ expresses the streamwise position of the
following aircraft with respect to the Mach cone extending downstream from the center
of the leading aircraft. Although there are small discrepancies due to nonlinearity, xµ can
be regarded as a parameter that indicates how the following wing interacts with the shock
and expansion waves.[1]

Figure 1 is a diagram showing the relation between the coordinate expressions. In this
figure, the conventional coordinate system is drawn in black dashed lines, the Mach cone
is drawn in orange lines, and the definition of the skewed cylindrical coordinate system is
drawn in green lines.

The leading aircraft, Aircraft 0, is defined as the origin of the coordinate system. Next,
the coordinates of the first following aircraft, Aircraft 1, is defined by the three parameters
given above, with the origin of coordinate definition placed at Aircraft 0. Finally, the
coordinates of the second following aircraft, Aircraft 2, is given by the three parameters
above, and an integer variable defining on which aircraft the origin of the coordinate
definition is placed. In general, this integer variable takes an integer value from the range
[0, i − 1] for Aircraft i. This coordinate definition make it possible to effectively cover
the coordinate space where we expect shock interaction, but, at the same time, exclude
regions where we expect no shock interaction.

The number of design variables was 7. The design variables and their upper and lower
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bounds are given in Table 1. Here, the subscripts on the variables denote to which aircraft
the variable belongs.

The constraints imposed on the positions of the aircrafts were that the aircrafts must
stay inside the outer boundary of the computational mesh, and that the aircrafts must be
a certain distance away from each other, for successful mesh generation. The mesh outer
boundary was a conical shape with the vertex at (−3.5, 0, 0), and the base is a circle,
located at (5.0, 0, 0), with a radius of 8.5. As for the distance, an ellipsoid that is able
to enclose the aircraft with a small margin is selected, and distance is defined using this
ellipsoid.

Finally, the problem can be given in the following form.

maximize
∑

i

Li/
∑

i

Di

maximize min di,j
i, j, i 6= j

subject to min x0
µ i > -2.5

i, j, i 6= j

max xi < 4.0
i

min d′
i,j > 2.0

i, j, i 6= j

Where,

(r0
i , θ0

i , x0
µ i) = F

−1

0 (FiCone (ri, θi, xµ i) )

d(i, j) = ((xi − xj)/1.0)2 + ((yi − yj)/1.2)2 + ((zi − zj)/0.1)2

Here, FiCone is the coordinate conversion function, and r0, θ0, x0
mu i are the cylindrical

coordinate parameters converted to iCone = 0.

Figure 1: Definition of the new coordinate pa-
rameters

Variable Type Bounds

r1 real [ 0, 3.0 ]

theta1 real [ -4.0, 4.0 ]

xµ 1 real [ -2.0, 2.0 ]

r2 real [ 0, 3.0 ]

theta2 real [ -4.0, 4.0 ]

xµ 2 real [ -2.0, 2.0 ]

iCone2
integer [ 0, 1 ]

Table 1: Design variables and their bounds
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3 METHOD

3.1 Optimization

In this study, optimization is carried out using a combination of Latin Hypercube
sampling, Kriging and multi-objective genetic algorithm. The steps of the optimization
is given next.

1. Generate initial solutions.

2. Evaluate objective and constraint function values.

3. Generate a response surface.

4. Evaluate the estimated objective values and the uncertainties to choose new solu-
tions to add to the response surface.

5. If satisfied with the accuracy, exit. Else, goto 2.

First of all, initial solutions are generated using Latin Hypercube sampling. Here, it
was made sure that the solutions satisfy the constraints. The objective and constraint
functions are evaluated using an Euler flow solver and simple geometry. Details on the
flow solver will be mentioned in section 3.2.

Next, response surface is generated from the solutions using Kriging. Kriging is a
statistics based response surface method that is able to estimate both the function values
and the their uncertainties. In this method, the unknown function of interest is expressed
as

y(x) = µ + Z(x)

where µ is a constant global model for the unknown function, and Z(x) is the random
deviation from that model. To model this function, a linear predictor,

ŷ = cT (x) y

is identified by minimizing the mean squared error subject to an unbiasedness constraint,
using Lagrange Multipliers and optimality condition.[2] Here, y is the vector of the evalu-
ated function values. Then, Kriging model used in this study is obtained in the following
form.

ŷ = µ̂ + rT R−1(y − 1µ̂)

and,

µ̂ =
1T R−1y

1T R−11

The mean squared error is given by

s2(x) = σ̂2

[

1 − rT R−1r +

(

1 − 1T R−11
)2

1T R−11

]
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Where,

σ̂2 =
(y − 1µ̂)T R−1(y − 1µ̂)

n
R is the matrix of correlation between the evaluated Zs, and r is the correlation vector
between the Z to be estimated and the evaluated Zs. Since the correlation of Z is strongly
dependent on the distance between the two solutions, a weighted distance and a Gaussian
random function will be used as the correlation.

d(xi, xj) = (xi − xj)
TΘ(xi − xj)

where, Θ is a matrix with the weights as the diagonal elements. Using this weighted
distance, the correlation will be defined as,

Corr (Z(xi), Z(xk))) = exp (−d(xi, xj))

r and R can finally be written as,

rj(x) = exp (−d(x, xj))

Ri,j = exp (−d(xi, xj))

The log-likelihood function of the sampled solutions can be written as,

−
n

2
ln(2π) −

n

2
ln(σ̂2) −

1

2
ln (|R|) −

1

2σ̂2
(y − 1µ̂)T R−1(y − 1µ̂)

Therefore, the problem will be an unconstrained optimization problem of minimizing,

−
n

2
ln(σ̂2) −

1

2
ln (|R|)

with respect to the weighting parameter matrix Θ. In the current problem definition,
design variable iCone is an integer variable. Therefore, the Kriging surface is generated
separately for each value iCone takes, for each objective function.

To evaluate the estimated objectives and the uncertainties simultaneously, a figure
of merit called Expected Improvement is used.[3] In case of a maximization problem,
Expected Improvement is defined,

EI(x) = E (max(Z − ymax, 0))

where, ymax the maximum objective value of the sampled solutions. Solving for the
expected value, the Expected Improvement results in,

EI(x) = (ŷ − fmax) Φ

(

ŷ − fmax

s

)

+ s φ

(

ŷ − fmax

s

)

where, φ and Φ are the probability density function and the cumulative distribution func-
tion of the Gaussian distribution. The process of maximizing the Expected Improvement
is carried out via genetic algorithm for use in Multi-Objective problems[4].

And finally, to evaluate the convergence of the Kriging model, cross-validation is carried
out by excluding and estimating one sampled solution, and comparing their values.
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3.2 Flow Computation

Since the objective of this study is to investigate the effectiveness of supersonic forma-
tion flying, the subject of the analysis is kept simple. For this reason, the model used for
this study is a simple elliptical planform wing with a biconvex airfoil.

Although simplification of the configuration is convenient, the drag characteristic of
the simplified model must be similar to that of a practical supersonic transport. The
aspect ratio and thickness are determined to satisfy this condition.[1] This resulted in an
elliptic wing with the following dimensions.

Aspect Ratio : 1.5
Normalized Span : 1.5π/4
Thickness Ratio : 0.04502
Wing Area : 0.9253

A three view diagram of this configuration is given in Fig.2.
The freestream Mach number used in this analysis is M = 1.5. This Mach number

was chosen considering recent trends in the cruise Mach number of recent supersonic
transports concepts. The angle of attack of the wings are maintained at α = 3.25◦. This
angle of attack is chosen so that the CL of the leading wing which is flying in undisturbed
freestream equals 0.146.

The computational mesh used in this analysis is an unstructured full three-dimensional
mesh with 1.05 million grid points, and 21,000 grid points on each wing. The cross-section
of this mesh at y = 0 is given in Fig.3. A full three dimensional mesh is used to allow for
asymmetric formations.

Figure 2: Three view diagram of simplified
model

Figure 3: Symmetry plane of computational
mesh
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Euler simulations are carried out using TAS-flow, an unstructured Euler/Navier-Stokes
solver, and the computational mesh was generated using EdgeEditor and TU TetraGrid,
which are CFD tools developed at Tohoku University.

TAS-flow is an unstructured Euler/Navier-Stokes solver using a finite-volume cell-
vertex scheme, HLLEW Riemann solver for flux computations,[5] and LU-SGS implicit
scheme for time integration.[6] EdgeEditor is an unstructured surface mesh generation
software. It takes CAD data as an input,[7] and generates a surface mesh using an
advancing front triangulation method.[8] TU TetraGrid is an unstructured volume mesh
generation software using the Delaunay triangulation algorithm.[9]

4 RESULTS AND DISCUSSIONS

4.1 Flow Field

To obtain an idea on the flow field, flow computations are carried out on two aircraft
formations. Details are given in the previous paper,[1] but two cases will be presented
here.

First of all, when (r, θ, xµ) = (1.23, π, 0.70), the following aircraft achieved the best
L/D. The Cp contours on the y = 0 is shown in Fig.4. The aerodynamic coefficients
of the leading and following aircrafts are, CL = 0.145, CD = 0.0183, L/D = 7.90 and
CL = 0.142, CD = 0.0137, L/D = 10.4, respectively, and the total L/D was 8.97. In this
case, the leading edge of the following aircraft is exposed to the expansion wave from the
leading aircraft, reducing the wave drag.

On the other hand, the following aircraft achieved the worst L/D when (r, θ, xµ) =
(1.34, 0.0, 0.00). The Cp contours on the y = 0 is shown in Fig.5. The aerodynamic

Figure 4: Cp contour of y = 0,
(r, θ, xµ) = (1.23, π, 0.70)

Figure 5: Cp contour of y = 0,
(r, θ, xµ) = (1.34, 0.0, 0.00)
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coefficients of the leading and following aircrafts are, CL = 0.145, CD = 0.0184, L/D =
7.89 and CL = 0.071, CD = 0.0153, L/D = 4.66, respectively, and the total L/D was 6.41.
In this case, the shock wave extending from the leading edge is impinging on the upper
surface of the following aircraft near the leading edge, spoiling the lift and increasing the
drag.

The results of the sensitivity analysis of the two aircraft formations indicate that xµ

is the parameter that determines the shock interaction pattern of the following aircraft,
and it is the parameter with dominating effect on the L/D of the following aircraft.

4.2 Optimization

Optimization has been carried out on three aircraft formations using the system intro-
duced in Section 3.

Solutions generated by this optimization system is shown in Fig.6 and 7, for iCone = 0,
iCone = 1 respectively. About 20 solutions were generated by Latin Hypercube sampling,
and about 15 points are added by 2 or 3 Kriging phases. Solutions generated by Latin
Hypercube Sampling are shown in blue symbols, those generated by Kriging in green,
yellow and red, in the order that they were generated. Here, the ellipse indicate the
region of 90% confidence for each stage of optimization.

Looking at the movement of the ellipse as the iteration proceeds, the solutions are being
generated in the direction that the Pareto-optimal solutions are expected to be. When
iCone = 0, the confidence ellipse for the solutions generated in the second Kriging stage
indicates a worse region compared to the confidence ellipse of the first stage of Kriging.
This is due to the fact that there was one “unlucky guess” in the solutions generated from
the second Kriging stage, and the confidence ellipse is dragged towards that solution.

dmin

L/
D

0 1 2 3 4 5
5.5

6

6.5

7

7.5

8

8.5

9

LHS
kriging1
kriging2
kriging3

Figure 6: Solutions generated by optimization
for iCone = 0

dmin

L/
D

0 1 2 3 4 5
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9
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kriging1
kriging2

Figure 7: Solutions generated by optimization
for iCone = 1
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So far, among all of the solutions generated, three non-dominated solutions have been
obtained. The objective function values for the three non-dominated solutions were,
(L/D, dmin) = (8.38, 2.23), (8.18, 3.61) and (8.17, 4.31).

First, strongly non-dominated solution (L/D, dmin) = (8.38, 2.23) is investigated. This
solution obtained the maximum L/D among all of the solutions. The coordinates, and
the aerodynamic coefficients of the aircrafts were,

x y z CL CD L/D
Aircraft 0 0.0 0.0 0.0 0.1453 0.0184 7.90
Aircraft 1 1.93 -0.69 -1.01 0.1490 0.0177 8.43
Aircraft 2 3.74 -0.22 -2.23 0.1593 0.0181 8.82

d0,1 = 2.29 d1,2 = 2.23 d2,0 = 4.36

When the coordinates for the following aircrafts are converted to the skewed cylindrical
expression using the relation given in Section 2, xmu for Aircraft 1 and 2 are 0.56 and
1.23. This corresponds to a position where Aircraft 1 is in a position where xµ = 0.56
with respect to the Aircraft 0, and Aircraft 2 is in a position such that xµ = 0.67 with
respect to Aircraft 1. Insight from the previous study indicates that flying in a position
such that xµ ≈ 0.5 is very effective in improving the cruise efficiency of the following
aircraft, therefore agrees very well with the current results.

However, the L/D of each of the aircrafts do not achieve the value that the previous
study achieves. This can either be due to the trade-off between the maximization of
L1/D1 and maximization of L2/D2 or due to the fact that solution is not yet optimal.

On the other hand, the coordinates and the aerodynamic coefficients for strongly non-
dominated solution for minimum separation distance were,

x y z CL CD L/D
Aircraft 0 0.0 0.0 0.0 0.1452 0.0184 7.89
Aircraft 1 4.00 -1.84 1.65 0.1476 0.0178 8.29
Aircraft 2 3.70 2.21 -0.04 0.1556 0.0187 8.32

d0,1 = 4.70 d1,2 = 4.40 d2,0 = 4.31

In this case, the constraint on the maximum value of x is active. This bounds the objective
dmin, and further improvement in this objective cannot be expected.

But, when the coordinates are converted to the skewed cylindrical expression, xµ ≈ 1.23
for both cases. Since there are no other constraints active, improvements in the cruise
performance can be expected with a similar value of minimum separation distance by
adjusting the position of the aircrafts such that xµ ≈ 0.5. Also, the previous study
indicates that effect of shock interaction is reduced as displacements in the y direction is
introduced. Therefore, improvements in L/D can be expected by changing values of θ1

and θ2.
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As mentioned before, the solutions obtained from optimization agreed very well with
the insight gained in the previous paper. However, this also indicates that the three
aircraft formations obtained so far has only been a combination of two aircraft formations,
meaning that aircrafts are only affected by one other aircraft. It is intuitively easy to
imagine that best performance will be obtained when the last aircraft is receiving beneficial
effect from both the two leading aircrafts. Therefore, further evaluation of solutions will
be carried out to search for such formations and evaluate their performance.

By using the skewed cylindrical coordinate expression as the design variables, it was
possible to generate solutions only in the region where there is shock interaction between
the aircrafts. However, in this coordinate definition, formations obtained for iCone = 0
may also be obtained for iCone = 1. This indicates that there is a redundant degree
of freedom in this coordinate definition, and results in an unnecessary expansion of the
design space, increasing the necessary number of evaluation. Therefore, in future study,
solutions should be converted from iCone = 0 to iCone = 1 and vice versa, and be used
in generating the Kriging surface to cover the the design space more effectively in the
limited amount of computation time.

5 CONCLUSIONS

In this study, Kriging has been applied to the design of formations of three supersonic
aircrafts for low drag supersonic flights and maximum separation between the aircrafts.
Optimization results have shown improvements towards Pareto-optimal solutions.

Solutions obtained during the optimization agree well with insight gained in past stud-
ies. On the other hand, the solutions obtained so far has been too intuitive in the sense
that all solutions are only an extension of the two aircraft formations. Therefore, opti-
mization will be continued to find innovative solutions which have a synergetic effect on
the performance.

A skewed cylindrical coordinate expression was used for the design variables to cover
only the regions where the pressure waves interact with the aircrafts. This expression
effectively searched the design space, but optimization exploited the fact that there is a
redundant degree of freedom in the problem definition. In future study, this redundancy
must be eliminated for a more effective search and a more accurate Kriging response
surface.

As for the design space exploration, the current number of solutions was not enough
to gain insight on the relation with the constraints and the design variables. Plans for
future study include, further addition of solutions using Kriging and the exploration of
the design space to clarify the relation between the objectives and the design variables.
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