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ABSTRACT 
     
An inverse method for supersonic wing design has been developed. The present method is 
based on iterative “residual-correction” concept. The geometry correction is calculated by 
solving linearized small perturbation (LSP) equation with a difference of surface pressure 
distributions as a boundary condition. In the present method, LSP equation is analytically 
transformed to integrodifferential equations by using Green’s theorem. Design results of an 
isolated wing and wing-fuselage configuration are presented here.     
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INTRODUCTION 
 
With a recent trend of the worldwide growth of air transportation, development of a next 
generation supersonic transport (SST) is under consideration in the United States, Europe, and 
Japan. There have been a few supersonic transport so far, such as, the TU-144 developed by the 
Soviet Union and the Concorde by the joint of the UK and France. But the TU-144 ceased its 
regular operation some time before 1985 because of problems with the engines and wing 
design. Unlike the TU-144, the Concorde continues its commercial service today. From the 
technological point of view, the Concorde is a great achievement.  However, from the 
economical point of view, the Concorde cannot be said a success. One of its shortcomings is 
low-speed performance (L/D = 4). Its poor L/D has to be compensated by high fuel burn, 
which increases the operating cost. To guarantee economic success of the next generation SST, 



a higher L/D ratio is indispensable. To achieve this goal, a new design technique for supersonic 
wings is necessary. There were several design methods [1,2,3] used for supersonic wings. Most 
of these methods consider only warp optimization by using the linearized method, however, it 
is also important to consider wing thickness control to obtain a wing of high performance. 
Especially, the thickness control plays an important role, such as, for prevention of the 
leading-edge separation and for laminar flow control. 
 
In this study, a three-dimensional supersonic wing design method that can determine both the 
warp and thickness at the same time is developed. The present method is extended from 
Takanashi’s inverse design method [4] used for the transonic wing design. Takanashi solved the 
inverse problem by using the integral form of the transonic small perturbation equation with 
“residual-correction” concept. This paper will discuss the mathematical formulation of the 
present method and show two design results. One is for an isolated-wing configuration and the 
other is for a wing-fuselage combination that is the baseline design of National Aerospace 
Laboratory’s experimental scaled SST.    
   
DESIGN PROCEDURE 
 
The inverse problem in the aerodynamic shape design is to find a geometry that yields a 
specified surface pressure distribution. The procedure of finding a corresponding geometry in 
the present method is described as follows. First, a target pressure distribution and an initial 
geometry are inputted to a design system and then the surface pressure distribution of this 
initial geometry is obtained by the flow analysis. In this design system, inverse calculation 
stage is separated from the flow analysis stage. Thus the any type of analysis, even an 
experiment, can be used for the flow analysis tool. In this study, the Euler/Navier-Stokes solver 
is used for the flow analysis. From the computed and target pressure distributions, the pressure 
difference is calculated. Using this pressure difference as a boundary condition, a geometry 
correction is obtained by solving the linearized small perturbation (LSP) equation. By 
modifying the initial geometry with the geometry correction, a new geometry is produced. This 
process will be iterated until ΔCp becomes sufficiently small. Figure 1 shows the flowchart of 
the present inverse design procedure. 

 
INTEGRAL FORMULATION OF INVERSE METHOD 
 
In a supersonic flow, the small perturbation potential equation can be expressed in the 
linearized form as 
 

                       ( )M xx yy zz∞ − − − =2 1 φ φ φ 0  (1) 



And a pressure coefficient on wing surface and a tangency condition can be written as 
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where the subscript ‘±’ denote the upper and lower surface of geometry. For brevity, a 
Prandtl-Grauert transformation is performed and new coordinates denoted with zyx ,,  are 
introduced. The transformed equations are written as  
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The objective of the inverse problem is to find the corresponding geometry that realizes the 
specified pressure distribution. The most common approach is to solve the partial difference 
equation (4) with the boundary condition, Eq. (5). But finding an exact geometry at one time is 
very difficult. In this paper, to develop a more general design procedure with a wide range of 
application, an iterative “residual-correction” concept is introduced. Suppose the solution of Eq. 
(4), φ( , , )x y z , for the initial geometry  is given and the perturbation, ),( yxf Δφ( , , )x y z , is 
occurred to this known flow. After some algebraic manipulations, the governing equation and 
boundary conditions of this method become 
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However, the governing equation (7) is still field expression. It requires many endeavors to 
solve this P.D.E directly. In the present method, this difficulty is eliminated by applying 
Green's theorem [5,6] to Eq. (7). The solution of governing equation (7), ),,( zyxφΔ , is 
expressed in the integrodifferntial form as    
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where 
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The integral surface τ1  is the part of z = 0  plane contained within the Mach forecone from 
the point ( , , )x y z , that is, the area bounded by the line ξ＝－∞ and the hyperbola;   
                      (   (12) ) ( ) ( )x y z− − − − − =ξ η ζ2 2 2 0
Namely, the integral surface τ1  is inside of the Mach forecone on the planform. The integral 
surface τ1  the triangular planform is shown in Fig. 2.  
 
To utilize the pressure distributions as a boundary condition, Eq. (10) is differentiated with 
respect to x and by adding the values of the resulting Δφ x x y z( , , )  at z = +0  and z = −0  we 
obtain 
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                   Δ Δ Δw x y x y x ys z z( , ) ( , , ) ( , , )= + − −φ φ0 0  (15) 

 
Similarly, differentiating both sides of Eq. (10) with respect to z and adding resulting 
Δφ( , , )x y z z  at  and , we obtain z = +0 z = −0
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                    Δ Δ Δu x y x y x ya x x( , ) ( , , ) ( , , )= + − −φ φ0 0  (17) 
                    Δ Δ Δw x y x y x ya z z( , ) ( , , ) ( , , )= + − −φ φ0 0  (18) 
  
By solving Eqs. (13) and (16) with the boundary conditions Δus  and , the geometry 
terms  and  can be obtained. As defined in Eqs. (15) and (18),  and 

represent the derivatives of thickness and camber correction, respectively. 
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The integrated value for the thickness correction, however, does not guarantee to satisfy the 
closure condition at trailing edge. In this paper, Δws are modified to satisfy the closure 
condition. Modifications are performed according to the following equation: 
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where l is local chord length and dx  is chord length divided by number of panels at each 
spanwise location. 
 



 
The geometry correction can be computed by performing the numerical integration in the x 
direction. 
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This equation may be contrasted with the camber design of Ref. 7. 
 
Since Eqs. (13) and (16) are based on LSP equation, they become invalid where the vorticity is 
generated. Such regions are typically around the root and tip of the wing. At the wing root, the 

bilateral symmetry is usually assumed for the flow analysis, but ∂
∂
p
y
≠ 0  when the straight 

isobar pattern is enforced for prescribing a pressure distribution for a swept wing. This breaks 
the irrotational flow assumption at the wing root. At the wing tip, on the other hand, the flow is 
naturally rotational due to the wing tip vortex. Therefore, the Eqs. (13) and (16) should be 
replaced with lower order approximations in those regions as 
                          Δ Δu x y w x ys s( , ) ( , )= −  (21) 
                          Δ Δw x y u x ya a( , ) ( , )= −  (22) 
These equations are now the supersonic linearized pressure coefficient equations. 
 
DESIGN RESULTS 
 
Isolated-wing configuration  
The planform used in this three-dimensional wing design problem is shown in Fig. 3. This 
planform is the so-called 0-th baseline configuration of the NAL SST program. The 
leading-edge sweep angle is about 70° and the leading- and trailing-edge kinks are located at 
43.96% and 40% spanwise sections, respectively. For inverse design, there are 50 panels in 
streamwise direction and 67 panels in spanwise direction. The target pressure distribution is 
obtained from the untwisted wing based on NACA-1204 airfoil in an inviscid flow at M = 2.0, 
α= 2°. The initial wing is obtained from NACA-0003 airfoil.  
Figure 4 shows comparison of surface pressure distributions at six spanwise sections among 
the target, initial, and designed wings after 6 design iterations. As shown in the figures, surface 
pressure distributions of designed wing coincide with those of target wing at all spanwise 
sections. 
 
Wing-fuselage combination  
The planform used in this wing-fuselage combination design problem is shown in Fig. 5. This 
planform is the 3-rd baseline configuration of the NAL SST program. For the inverse 
computation, the half span of wing is divide into 82 panels in spanwise direction and 50 panels 
in chordwise direction. Target pressure distribution is specified to have the elliptical load 



distribution to minimize the induced drag. The upper surface of target pressure distribution is 
designated to keep the laminar boundary layer as long as possible. Figure 6 shows comparison 
of surface pressure distributions at four spanwise sections among the target, initial, and 
designed wings after 8 design iterations. Though pressure distributions of designed wing 
doesn’t perfectly coincide with target pressure distributions, they become very close to target 
pressure distributions. In Fig. 7, the spanwise load distribution of target, initial and designed 
wings are plotted. As seen in Fig. 7. the load distribution of designed wing coincides with that 
of target almost perfectly. 
 
CONCLUSION & FUTURE WORK 
 
In this study, Takanashi’s transonic inverse design method is extended to supersonic 
wing-fuselage design. Once target pressure distributions are specified, the corresponding wing 
configuration can be found by the present inverse design method with Euler/Navier-Stokes 
solvers. Design results confirmed the validity of this method.  
To use this design method effectively, the target pressure distribution must be selected carefully. 
All design objectives should be translated into the target pressure distributions. The 
determination of an optimal target pressure distribution [8] will be studied in future for the 
supersonic cases.       

 
REFERENCES 

 
1.  Carlson, H. W. and Miller, D. S., Numerical Methods for the Design and Analysis of Wings 

at Supersonic Speed, NASA TN D-7713, 1974. 
2.  Yoshida, K. and Hayama, K., Experimental and Numerical Study of Aerodynamic 

Characteristics for Second generation SST, SAE paper 91-2056, 1991. 
3.  K. B. Walkley, and G. E. Smith, Application of a Full Potential Method to Supersonic 

Aircraft Design and Analysis, Journal of Aircraft, Vol. 26, No. 1, pp.6-12, Jan., 1989. 
4.  Takanashi, S., Iterative Three-Dimensional Transonic Wing Design Using Integral 

Equations, Journal of aircraft, Vol. 22, No. 8, pp.655-660, Aug. 1985. 
5.  Heaslet, M. A., Lomax, H., and Jones, A. L., Volterra's Solution of the Wave Equation as 

Applied to Three-Dimensional Supersonic Airfoil Problem, NACA Rep. 889, 1947 
(Formerly NACA TN 1412). 

6.  Lomax, H., Heaslet, M. A. and Franklyn, B. Fuller, Integrals and Integral Equation in 
Linearized Wing Theory, NACA Rep. 1054, 1951. 

7.  Carlson, H. W. and Middleton, W. D., A Numerical Method for Design of Camber Surfaces 
of Supersonic Wings with Arbitrary Planforms, NASA TN D-2341, 1964.   

8.  Obayashi, S., Jeong, S. and Matsuo, Y., New Blunt Trailing-Edge Airfoil Designed by 
Inverse Optimization Method, Journal of Aircraft, Vol.34, No.2, pp.255-257, March-April, 



1997.



 

 
Fig. 1. Flowchrat of inverse design procedure       Fig. 2. Integral surface on the triangular      
                                                 planform  
 
 
 
 
 
 
 
 
 
 
 
 
 
                   Fig. 3. Planform of wing-only configuration 
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Fig. 4. Comparisons of surface pressure distributions among the target, initial, and designed  
      wing in an isolated-wing configuration design problem 

 
 
 
 
 
 
 
 
 
 

Fig. 5. Planform of wing-fuselage combination design 
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Fig. 6. Comparisons of surface pressure distributions among the target, initial, and designed  
      wing in a wing-fuselage combination design problem 
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Fig. 7. Spanwise load distribution of wing-fuselage combination design problem 
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