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Inverse Design Method for Supersonic Transport 

(Abstract) 
 

Shinkyu Jeong 
Tohoku University, 1999 

 

   In this study, a robust and efficient design method for a wing of supersonic transport 

is developed. Takanashi’s transonic inverse design method is extended to the supersonic 

flow region. The present inverse method is based on the iterative “residual-correction” 

concept.  By applying Green’s theorem, the governing partial differential equation 

(potential flow equation) is transformed into integral equations on a wing surface. In 

case of three-dimensional design problems, the present method is revised by using the 

supersonic linearized pressure coefficient equations near the wing root and tip where the 

irrotational flow assumption does not stand.   

   Genetic Algorithms (GAs) is next applied to optimize target pressure distribution for 

the inverse method. The key features of GAs are as following: 1) GAs use objective 

function information (fitness values) instead of derivatives or other auxiliary knowledge. 

2) GAs search from a population of the points not from a single point. These features 

make GAs robust and attractive to practical aerodynamic design problems that often 

have to deal with multiple objectives.  

   The design goal of this study is the drag reduction under a specified lift. The shape 

of target pressure distribution that gives minimum drag is studied. For the induced drag 

reduction, chordwise loading patterns are examined.      

  Furthermore, a wing twist specification technique is introduced to the present 

supersonic inverse design method. It is known that three-dimensional aerodynamic 
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inverse problems have non-unique solutions. By using this property, one can select 

favorable wing geometry among the many solution geometries of the three-dimensional 

aerodynamic inverse problem. In the present study, a smooth trailing-edge line was 

sought as a favorable design for manufacturability.  

   Finally, to construct an efficient design system, the unstructured grid approach is 

implemented to the present inverse design method. The unstructured grid is generated 

using the advancing front method and Delaunay triangulation. The resulting design 

system was successfully applied to the inverse design of the wing-nacelle configuration. 

A great versatility and geometrical flexibility of the unstructured grid approach make 

our design system more efficient.  
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CCHHAAPPTTEERR  ⅠⅠ 

INTRODUCTION 

 
 

Ⅰ-1. Development of Supersonic Transport (SST) 

   Since the advent of powered flight in 1903, commercial aviation has grown 

remarkably with the development of world economy and industry. This growth in air 

travel is projected to continue well into the 21st century with increasing demands for 

more efficient aircraft. As one of the answers for such a demand, next generation 

Supersonic Transports (SSTs) are considered.  

   The first generation SSTs are the TU-144 [1] and the Concorde [2]. Although both 

SSTs went into service in 1970s, they could not succeed in business very well. The 

TU-144 was developed by the Soviets and entered its service in 1975 as a mail and 

freight carrier within the Soviets Union. But it ceased the regular operation some time 

before 1985 because there were some problems with the engine and wing design.  

   Unlike the TU-144, the Concorde that started its commercial operation in 1976 still 

continues its service today as the only commercially operating SST. From the 

technological point of view, the Concorde was a great achievement. Especially, its 

high-speed performance was admirable. However, the Concorde also had some 

shortcomings. The community noise around the airport generated at the takeoff and 

landing and the sonic boom at the supersonic cruising caused the environment problems. 

Furthermore, the operating cost of the Concorde was rather high. It can be attributed to 
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its poor low-speed performance (L/D=4.0). To compensate poor L/D, the Concorde had 

to use a powerful engine that consumed a more fuel, which increased the operating cost. 

Another weak point is that its operating range is too short (about 3500 nmi). To meet the 

demand of the markets, the non-stop range of over 5000 nmi is required. Because of 

these shortcomings, only 16 Concordes were manufactured before the project was 

stopped.   

   For the success of the next generation SST, it must be economically viable and 

environmentally acceptable. To develop such an airplane, the United States and the 

Europe already started research and development programs for next generation SSTs [3, 

4, 5, 6, 7, 8, 9, 10] and their technologies for designing SSTs have advanced remarkably. 

To catch up with this worldwide progress, a supersonic research program [11, 12] has 

been initiated in National Aerospace Laboratory (NAL) of Japan. The main subjects of 

the program are to develop  

 

1) CFD (Computational Fluid Dynamics)-based aerodynamic design technology  

2) Light weight composite structure technology 

3) High performance propulsion system 

4) Advanced control system 

 

Among these subjects, NAL had laid a special emphasis on the development of the 

sophisticated CFD design technique for the next generation SST. The technological 

achievements of the research program are applied to the design of scaled experimental 

airplanes. They will perform flight tests with these experimental airplanes. The CFD 
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design technique developed in the research program will be verified by the flight tests.      

   School of Engineering of Tohoku University has made a cooperative agreement 

with NAL in an aerodynamic research based on CFD since 1995. Collaboration on the 

supersonic wing design has started in 1996. This doctoral research has been performed 

as a part of NAL and Tohoku University cooperative research program.   

 

Ⅰ-2. CFD-Based Aerodynamic Design Technique 

   Although the theoretical methods were used for designing the Concorde, such as the 

slender body theory and the supersonic area rule, their applications were limited to 

make a rough estimate of the aerodynamic characteristics. The design of the Concorde 

was wholly based on the experimental data from several thousands hours of wind tunnel 

tests. Wind tunnel data are very helpful to the design of the airplane, however, its cost is 

too expensive.  

   On the other hand, the cost of numerical methods is much cheaper than that of wind 

tunnel test. There are several numerical design methods proposed for a wing at a 

supersonic speed. The most widely used design methods for supersonic aircraft are the 

linear theory for wing warp optimization [13] and the supersonic area rule for the 

fuselage indentation [14]. These methods are very effective to reduce the induced drag 

and the wave drag, respectively. However, these methods optimize each aircraft 

component separately. When each component of the aircraft is integrated into the 

complete configuration, the optimized effect of each component is degenerated due to 

the interference between the components of aircraft. In this case, the auxiliary steps to 
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recover the optimized performance are required.  

   Recently, the design optimization methods [15, 16, 17, 18] that treat a complete 

configuration directly are extended to the supersonic aircraft design. The essence of 

these methods is that a numerical optimization method is coupled directly with an 

existing CFD analysis code. The numerical optimization method is used to minimize 

(maximize) a chosen aerodynamic quantity which is evaluated by a CFD analysis code. 

Most of these optimization methods require the evaluation of the gradient of the 

objective function with respect to the design variables. The configuration is 

systematically modified through the design variables in use. However, such a direct 

method will require many design variables in the precise description of complete 

aircraft configurations. Even with the modern supercomputer, it would take too many 

computational times.         

   An alternative approach, which requires much less computational expense, is 

inverse design methods. The aerodynamic inverse problem is defined to seek geometry 

that yields the prescribed pressure distribution at the design condition. The existing 

inverse design methods are categorized into two classes. The first is based on the partial 

differential equation of flows. These methods use the modified potential flow equation 

to solve a Dirichlet boundary value problem in which the velocity potential derived 

from a specified pressure distribution is imposed as a boundary condition. This method 

was developed by Carlson [19] and Tranen [20] for two-dimensional airfoil design and 

successfully extended to three-dimensional design problem by Henne [21] and Shankar 

[22]. However, the applications of these methods were limited to the minor modification 
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of existing wings and airfoils. In other words, the geometry correction must be small 

enough to run these methods successfully. This means that the designer has to know 

approximate geometry of wing before the inverse design.    

   The second is based on the iterative “residual-correction” concept. This class of 

methods solves auxiliary equations to find geometry corrections corresponding to 

residuals at each iteration step defined as the difference between the pressure on the 

transient geometry and the pressure prescribed by the designer. Because of the iterative 

approach, a relatively large geometry correction can be achieved. One of the merits of 

this class of methods is that these methods can be applied to complicated configurations 

with thanks to the iterative “residual-correction” concept. Another advantage is that the 

required analysis can be “black-box,” and thus any type of analysis, even experiment, 

can be used.  

   This kind of methods [23, 24, 25] can be further classified by the auxiliary equations 

to find geometry corrections: wave-wall, Garabedian-McFadden (GM) and integral 

equations. Among these methods, Takanashi’s inverse design method [26] that uses the 

integral equations as the auxiliary equations has advantage over the other methods in 

applicability to three-dimensional design problems, since most of the other methods are 

formulated only for two-dimensional design problems. Furthermore, Takanashi’s 

method needs less geometry constraints than the other methods. These merits of 

Takanashi’s method are also attractive to supersonic design problems. Unfortunately, 

Takanashi’s method was formulated only for subsonic and transonic flows. The 

extension of Takanashi’s method implies that the method has to be derived 
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mathematically again from the governing equations of supersonic flows.     

 

Ⅰ-3. Optimization Method for Aerodynamic Design 

   The aerodynamic inverse problem is to find geometry corresponding to the 

prescribed pressure distribution. The most important point to obtain a wing of a high 

performance with an inverse method is to find an appropriate target pressure distribution. 

Therefore, numerical optimization is considered for the determination of target 

pressures.  

   The numerical optimization method is very important to improve the design 

efficiency. One of the most widely used optimization algorithms is the gradient-based 

method. While this method has been improved and extended considerably, there are 

some weak points for the application to real-world engineering problems. First, this 

method is local in scope. It will not find a global optimum, because this method can 

only find a local optimum in a neighborhood of the initial point. Second, this method 

requires a well-defined gradient in the domain of interest. However, the aerodynamic 

engineering problems are fraught with discontinuities and ripples in the objectives as 

well as the constraints. In this sense, the gradient-based method is not suitable for an 

aerodynamic design problem.  

   Recently, Genetic Algorithms (GAs) [27], one of the Evolutionary Algorithms, have 

been enjoying popularity in this field. GAs are search algorithms based on the 

mechanics of natural selection and natural genetics. GAs are different from other 

conventional optimization methods in the following four points: 
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1) GAs work with a coding of the parameters set, not the parameters themselves. 

2) GAs search from a population of points, not a single point.  

3) GAs use payoff (objective function) information, not derivatives or other auxiliary 

knowledge. 

4) GAs use probabilistic transition rules, not deterministic rules.  

 

These features make GAs robust and attractive to aerodynamic design problems where 

nonlinearity of fluid may result in discontinuities in the objectives, constraints and their 

derivatives.  

   GAs have been applied to aeronautical problems in several ways, including 

parametric and conceptual design of aircraft [28], topological design of nonplanar wings 

[29] and aerodynamic optimization using CFD [30]. Application of these aerodynamic 

optimization methods to realistic problems, however, is limited by the fact that they are 

the direct approach. The direct approach requires CFD evaluations of each members of 

the population at every generation in GAs. As a result, it requires a tremendous amount 

of computational time. 

   In recent years, GAs has been applied to inverse optimization methods [31, 32] for 

the aerodynamic design. In this case, since the objective of optimization is not a 

geometry itself but a pressure distribution, GAs are not required to perform CFD 

evaluations. By doing this way, computational cost can be saved greatly. This method 

was successfully applied to aerodynamic design of transonic wings for commercial 

aircraft [33]. This design approach will also be extended to the supersonic wing design.           
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Ⅰ-4. Unstructured Grid Approach 

CFD becomes an indispensable tool for the aerodynamic design and analysis of aircraft. 

However, its application to a design problem is still limited to relatively simple aircraft 

components such as airfoils and wings. One of the real bottlenecks is the 

time-consuming procedure to generate an appropriate grid around a complex 

configuration. One of the options for resolving this problem is unstructured grid 

approaches [34,35, 36, 37, 38]. Although this unstructured grid method requires an 

additional cost in terms of computational time and memory for the flow algorithms, this 

approach, as a counter balance, has a great versatility and geometrical flexibility to the 

mesh generation process. Its workload required for grid generation around the 

complicated aircraft configurations is far less than that of the structured grid approach. 

It will be very effective to adopt the unstructured grid approach to CFD design system, 

especially, in case of the complicated configuration design 

.     

Ⅰ-5. Objectives and Outline of This Thesis  

   The objective of this study is the development of a robust and efficient design 

method for a wing of a supersonic transport. As a main objective of this works, 

Takanashi’s transonic inverse design method that solves the integral equations using the 

iterative “residual-correction” concept to find geometry corrections will be extended to 

a supersonic flow region. Optimization of the inverse design and application of the 

inverse design to complicated configurations will then be studied.  

   In Chapter 2, mathematical formulation for the supersonic inverse method will be 
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described. Modification for improving the convergence to the target pressure 

distribution will be also suggested here. The validation of the present formulation will 

be given through design test cases.  

   In Chapter 3, with the supersonic inverse code developed in Chapter 2, the optimum 

design will be executed. Genetic Algorithm will be applied to optimize a target pressure 

distribution required for the inverse design. The shape of a target pressure distribution 

for the drag reduction will be considered. Furthermore, the twist-specification inverse 

design (TSID) will be introduced. The concept of TSID is based on the non-uniqueness 

of the three-dimensional aerodynamic inverse problem. A designer should be able to 

select a favorable geometry among many solution geometries of the inverse problem. 

Therefore, TSID specifies the twist distribution for manufacturability.  

   In Chapter 4, the inverse design method will be extended to the wing-fuselage and 

wing-nacelle configurations. The proposed inverse method has been implemented into 

NAL SST design process successfully. The design result of a wing-fuselage 

configuration of NAL’s scaled supersonic experimental aircraft is presented by courtesy 

of NAL SST design team. CFD analysis about the wing-fuselage configuration was 

performed using the multiblock structured grid approach. This design reveals that the 

grid generation is a bottleneck of the inverse design around the complicated geometry. 

To resolve this problem, the unstructured grid approach will be adapted to the design of 

wing-nacelle configuration because of its flexibility to fit complex configuration and 

refinement capability. Although the nacelles produce a strong influence on the flow filed, 

the inverse method works satisfactory.  
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CCHHAAPPTTEERR  ⅡⅡ  

INVERSE DESIGN METHOD FOR WINGS OF 

SUPERSOINC TRANSPORT 

 

 

II - 1. Introduction 

   For the success of the next generation SST development, an efficient and robust 

aerodynamic wing design system is necessary. The existing supersonic wing design 

methods [1, 2, 3] so far have their own limitations. In case of transonic wing design, 

Takanashi’s inverse methods [4] coupled with target pressure optimization codes [5, 6, 7, 

8] were very successful. The merits of this method are as follows:  

 

1) it requires less computational time, compared with direct design methods. 

2) it accounts for nonlinear effects of thickness distribution to the optimized warp 

because warp and thickness are designed simultaneously. 

3) it can be applied to complicated configurations [9]. 

 

   In this chapter, extension of this method to the supersonic wing design will be 

considered. The mathematical formulation for supersonic flows [10] will be mainly 

discussed here and design tests will be given for validation of the formulation.  
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II-2. Formulation of Supersonic Inverse Method 

   In a supersonic flow, the potential equation can be expressed in the linearized form, 

as               

                      0)1( 2 =−−−∞ zzyyxxM φφφ       (2-1) 

The pressure coefficient on a wing surface and the tangency condition are expressed in 

terms of the velocity potential xφ  and zφ , as 

                      C x y x yp x± = − ±( , ) ( , , )2 0φ      (2-2) 

                         
∂

∂
φ

f x y
x

x yz
± = ±
( , )

( , , )0    (2-3) 

where the subscripts ‘±’ denote the upper and lower surfaces of the wing. For brevity, 

the expression  is eliminated through a Prandtl-Glauert transformation 

and a new coordinate system with x, y and z is introduced as 

122 −= ∞Mβ

                      zzyyxx ββ ===   ,  ,  (2-4) 

After the transformation, Eqs. (2-1), (2-2) and (2-3) are rewritten as 

                                   (2-5) 0=−− zzyyxx φφφ

                       C x y x yp x± = − ±( , ) ( , , )
β

β φ2 02        (2-6) 

                       ∂
∂

β φ
f x y

x
x yz

± =
( , ) ( , , )3 0±         (2-7) 

   Suppose φ( , , )x y z , the solution of the equation (2-5) which governs the potential 

flow due to the initial geometry , is already known by means of numerical 

analysis or experiment. Now let us introduce small perturbation due to the geometry 

f x y( , )
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displacement . Then, the governing equation of this perturbed flow is 

expressed as  

( yxf ,Δ )

                 ( ) ( ) ( )φ φ φ φ φ φxx xx yy yy zz zz+ − + − + =Δ Δ Δ 0     (2-8) 

and the pressure coefficient and the tangency condition are written as   

          C x y C x y x y x yp p x x± ±+ = − ± +( , ) ( , ) [ ( , , ) ( , , )]
β β

β φ φΔ Δ2 02 ±0  (2-9) 

          ∂
∂

∂
∂

β φ φ
f x y

x
f x y

x
x y x yz z

± ±+ = ± +
( , ) ( , ) [ ( , , ) ( , , )]Δ

Δ3 0 0±

)

 (2-10) 

By subtracting Eqs. (2-5) - (2-7) from Eqs. (2-8) - (2-10), the perturbation equations for 

the geometry displacement  are obtained as follows.  ( yxf ,Δ

                       Δ Δ Δφ φ φxx yy zz− − = 0               (2-11) 

                       Δ ΔC x y x yp x± = − ±( , ) ( , , )
β

β φ2 02     (2-12)                   

                       )0,,(),( 3 ±Δ=
Δ ± yx

x
yxf

zφβ
∂

∂         (2-13) 

   The purpose of the present inverse method is to find the geometry displacement 

 from the pressure difference ( yxf ,Δ ) ( )yxC p ,Δ . In order to find , it is 

required to solve the partial difference equation (2-11). By applying a Green’s theorem 

to Eq. (2-11), 

( yxf ,Δ )

)( yx,φΔ  can be expressed in the integrodifferential form. The analytic 

expression of Green’s theorem for Eq. (2-11), relating a volume integral over the region 

V to a surface integral over surface S enclosing V, is written in the form  

           [ ] [ ]dSDDdVLL
S nnV ∫∫∫∫∫ Δ−Δ−=Δ−Δ ϕφφϕϕφφϕ )()()(   (2-14) 

where  
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                       (2-15) zzyyxxL φφφφ Δ−Δ−Δ≡Δ )(

and 

                     
z

n
y

n
x

nDn ∂
Δ∂

−
∂
Δ∂

−
∂
Δ∂

=
φφφ

321   (2-16) 

In Eq. (2-16), ,  and  are direction cosines of inward normals to the surface S 

and they have following relations with co-normal cosines 

1n 2n 3n

1ν , 2ν  and 3ν  as  

                     332211  , , nnn ==−= ννν  (2-17) 

The geometry connection between the normal and the co-normal is illustrated in Fig. 

2-1.  

   Replacing the normal cosines in Eq. (2-14) with the co-normal cosines, Eq. (2-14) 

becomes  

            [ ] dSdVLL
SV ∫∫∫∫∫ ⎥⎦

⎤
⎢⎣
⎡

∂
∂

Δ−
∂
Δ∂

−=Δ−Δ
ν
ϕφ

ν
φϕϕφφϕ )()(  (2-18) 

If ϕ  is properly chosen so as to satisfy 0)( =ϕL  throughout the region V, Eq. (2-18) 

is  reduced to the following equation; 

                       ∫∫∫∫ ∂
∂

Δ=
∂
Δ∂

SS
dSdS

ν
ϕφ

ν
φϕ        (2-19) 

   Now consider a point  and a surface ( zyxP ,, ) τ , as sketched in Fig. 2-2. The 

purpose of application of Green’s theorem is to determine the value of φΔ  at an 

arbitrary point . From the physics of the supersonic flow, the area that 

influences on the value of 

( zyxP ,, )

φΔ  at P is restricted to the region within the forecone with 

a vertex at P and within the envelope of the aftercone with vertices at the foremost 

disturbance area of τ . Referring to Fig. 2-2, this would mean the volume bounded by 

forecone Г and the aftercone λ with a vertex at the apex of the surface τ. Since 
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for the boundary value problems involved the surfaceτ remain in the xy-plane, the 

integral surface S consists of all three surfaces λ,Γ and τ.       

   To the surfaceΓ, it is impossible to determine φΔ  and 
ν
φ

∂
Δ∂  unless the particular 

solution ϕ  and its derivatives with respect to co-normal vanish everywhere onΓ. Thus 

the proper choice of ϕ  is  

               ϕ ξ η ζ ξ

η ζ
( , , ; , , ) cosh

( ) ( )
x y z x

y z
=

−

− + −
−1

2 2
  (2-20)    

The value of ϕ  becomes zero on the forecone Γ, since the equation of this cone is  

                   (    (2-21) ) ( ) ( )x y z− − − − − =ξ η ζ2 2 2 0

Furthermore, since the co-normal is always directed along the forecone, 
ν
ϕ
∂
∂  is the 

gradient of ϕ  along Γ and thus it is also zero. As a result, the integration on the 

surfaceΓ vanishes. 

   To the surfacesλandτ, Eq. (2-19) provides an equality for the distribuiton of φΔ  

and 
ν
φ

∂
Δ∂ , provided φΔ  and ϕ  satisfy Eq. (2-11) through the enclosed volume 

mentioned. However, although ϕ  satisfies Eq. (2-11) everywhere in the enclosed 

volume opposite τ  from P (under the xy plane in Fig. 2-2), along the line 

 (above the xy plane in Fig. 2-2) 0)()( 22 =−+− ζη zy ϕ  is infinite and does not 

satisfy the assumption made in establishing Green’s theorem. If this line is excluded, 

however, by means of a cylinder κ of radious ρ with the axis lying along the line 

, then equation (2-19) may be applied to the region outsideκ 

and yet within the space bounded byλ,Γ and τ. In fact Eq. (2-19) can then be 

0)()( 22 =−+− ζη zy
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written 

                      0
1

=⎟
⎠
⎞

⎜
⎝
⎛

∂
Δ∂

−
∂
∂

Δ∫∫ ++
dS

λκτ ν
φϕ

ν
ϕφ   (2-22)       

where 1τ  is the portion τ of bounding the region of integration. If 

( ) ( )22 ζη −+−= zyR  and cylindrical coordinates ρ,θ and )( ξ−x  are used, an 

element of area on the cylinder κ is )( ξθρ −−= xdddS , while  

                     ( )
( ) 22 ρξρ

ξϕ
φ
ϕ

−−

−
−=

∂
∂

=
∂
∂

x

x
R

  (2-23) 

so that                       

           ∫∫ ⎥⎦
⎤

⎢⎣
⎡

∂
Δ∂

−
∂
∂

Δ
→ κρ ν

φϕ
ν
ϕφ

0
lim  

         

( )

( )∫

∫∫∫∫

∫∫ ∫∫

Δ−=

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
∂
Δ∂

−Δ−=

−
−

∂
Δ∂

−
−

−−Δ
=

→

−

→→

x

x
dzy

xddxdd

xddx
x

xddx

λ

εεφπ

ξθρ
ρ
ξ

ν
φξθφ

ξθ
ρ
ξ

ν
φ

ρξρ

ξθξφρ

κ ρκ

κ κρρ

,,2

)(lnlim

)()(coshlim
)(

)(lim

0

1

0220

 

         (2-24) 
where xλ is x on λ.                                      

If this result is applied to Eq. (2-22), one can obtain 

 

             dSdzy
x

x∫ ∫∫ + ⎥⎦
⎤

⎢⎣
⎡

∂
Δ∂

−
∂
∂

Δ=Δ
λ λτ ν

φϕ
ν
ϕφεεφπ

1

),,(2  (2-25) 

and, after differentiating Eq. (2-25) with respect to x,  

             ( ) dS
x

zyx ∫∫ + ⎥⎦
⎤

⎢⎣
⎡

∂
Δ∂

−
∂
∂

Δ
∂
∂

=Δ
λτ ν

φϕ
ν
ϕφ

π
φ

12
1,,  (2-26) 
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   Now considering the region bounded by the surfaces τ, Γ and λ′ , the portion of 

λ on the opposite side of τ from the point P, ϕ  is finite through the region and Eq. 

(2-22) becomes 

                dS
x ∫∫ ′+ ⎥⎦

⎤
⎢⎣
⎡

′∂
′Δ∂

−
′∂

∂′Δ
∂
∂

−=
λτ ν

φϕ
ν
ϕφ

π 12
10  (2-27) 

where φ′Δ  is the value of the potential function on the side of τ opposite P and ν ′  

is in the opposite direction to ν on τ. 

   By adding Eq. (2-26) to Eq. (2-27),  

      ( ) dS
x

zyx ϕ
ν
φ

ν
φφ

τ∫∫ ⎥⎦
⎤

⎢⎣
⎡

′∂
′Δ∂

+
∂
Δ∂

∂
∂

−=Δ
12

1,,  

                

( )

dS
x

dS
x

dS
x

∫∫

∫∫∫∫

′ ⎥⎦
⎤

⎢⎣
⎡

′∂
′Δ∂

−
′∂

∂′Δ
∂
∂

+

⎥⎦
⎤

⎢⎣
⎡

∂
Δ∂

−
∂
∂

Δ
∂
∂

+
∂
∂′Δ−Δ

∂
∂

+

λ

λτ

ν
φϕ

ν
ϕφ

π

ν
φϕ

ν
ϕφ

πν
ϕφφ

π

2
1

2
1

2
1

1

 

 (2-28) 

The value of φΔ  on λ and λ′  is zero since φΔ  is identified with the perturbation 

velocity potential in this study. Thus Eq. (2-28) becomes  

          
( )

( ) dSdS
x

zyx

ν
ϕφφ

π
ϕ

ν
φ

ν
φ

π

φ

ττ ∂
∂′Δ−Δ

∂
∂

+⎥⎦
⎤

⎢⎣
⎡

′∂
′Δ∂

−
∂
Δ∂

∂
∂

−=

Δ

∫∫∫∫
11 2

1
2
1

,,
  

       (2-29) 

From the thin-wing assumption, 
ξν ∂
∂

=
∂
∂  and thus Eq. (2-29) can be written as 

  ( ) =Δ zyx ,,φ     

    ηξηξϕηξφηξφ
∂
∂

π ζζτ
ddzyx

x
)]0,,;,,())0,,()0,,(([

2
1

1

×−Δ−+Δ− ∫∫   →①  
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  ηξηξϕηξφηξφ
∂
∂

π ζτ
ddzyx

x
)]0,,;,,())0,,()0,,(([

2
1 

1

×−Δ−+Δ+ ∫∫   →② 

                              (2-30)   

For the first term on the right-hand side, ①, the partial derivative can be moved inside 

the integral as  

    
( ) ( )

( ) ( )[ ] ηξηξφηξφ
ηξπ τ ζζ dd

zyx
∫∫ −Δ−+Δ×

−−−−
−=

1

 0,,0,,1
2
1

222
①                     

  (2-31) 

The second term on the right-hand side, ②, can be rewritten as  

  
( )

( )[ ] ( ) ( )
( ) ( )[ ]

( ) ( )
( )

( ) ( )[ ]

( ) ( )
( )

( ) ( )[ ]
⎪⎭

⎪
⎬
⎫

−Δ−+Δ
+−

−−−−
+

⎪⎩

⎪
⎨
⎧

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
−Δ−+Δ

+−

−−−−−
∂
∂

=

−Δ−+Δ
−−−−+−

−
∂
∂

=

∫

∫

∫∫

ξηξφηξφ
η

ηξ

ηξφηξφ
η

ηξ
η

π

ηξηξφηξφ
ηξη

ξ
π

ξξ

τ

d
zy

zyxz

zy
zyxz

d
x

dd
zyxzy

xz
x

x

EL

0,,0,,         

0,,0,,
2
1     

0,,0,,
2
1

22

222

..

22

222

222221

②

 

        (2-32) 

Assuming the subsonic leading edge, 

          ( ) ( )0,.,.,.,.               .. −Δ=+Δ→= ηφηφξ ELELEL  

          ( ) ( ) ( ) 0                222 =−−−−=→= zyxrconeMachtheonx c ηξξ  

and thus,       

      
( )

( ) ( )[ ] ξηξφηξφ
η

η
π ξξ d

zy
zr

d
x

x

EL

c∫∫ −Δ−+Δ
+−∂

∂
=

.. 22 0,,0,,
2
1

②  (2-33) 
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On the Mach forecone,  so the partial derivative 0=cr x∂
∂  can be moved into the 

integral as  

 

       ( )
( )[ ] ( ) ( )[ ] ηξηξφηξφ

η
ξ

π τ ξξ dd
rzy

xz

c
∫∫ −Δ−+Δ

+−
−

=
1

0,,0,,
2
1

22②  (2-34) 

Therefore, 

       

( )

( ) ( )
( ) ( )[ ]

( )
( )[ ] ( ) ( )[ ] ηξηξφηξφ

η
ξ

π

ηξηξφηξφ
ηξπ

φ

τ ξ

τ ζζ

dd
rzy

xz

dd
zyx

zyx

c
∫∫

∫∫

−Δ−+Δ
+−
−

+

−Δ−+Δ×
−−−−

−=

+=Δ

1

1

0,,0,,
2
1   

0,,0,,1
2
1

,,

22

222

②①

  

                                 (2-35) 

   To utilize the pressure distributions as a boundary condition, Eq. (2-35) is 

differentiated with respect to x and then by adding the values of the resulting 

( )zyxx ,,φΔ  at 0+=z  and 0−=z , 

( ) ( )0,,0,, −Δ++Δ yxyx xx φφ         

       
( )

( ) ( )[   0,,0,,1
2
1 

1 0

ηξηξφηξφ
π ζζτ

dd
rx zc

−Δ−+Δ
∂
∂

−= ∫∫
+=

]  →③ 

        
( )

( ) ( )[   0,,0,,1
2
1 

1 0

ηξηξφηξφ
π ζζτ

dd
rx zc

−Δ−+Δ
∂
∂

− ∫∫
−=

]   →④ 

        ( )
( )[ ] ( )

( ) ( )[ ]∫∫ −Δ−+Δ
+−
−

∂
∂

+
+=

1

  0,,0,,
2
1

0
22τ ξ ηξηξφηξφ

η
ξ

π
dd

rzy
xz

x zc

 →⑤ 

         ( )
( )[ ] ( )

( ) ( )[ ]∫∫ −Δ−+Δ
+−
−

∂
∂

+
−=

1

  0,,0,,
2
1

0
22τ ξ ηξηξφηξφ

η
ξ

π
dd

rzy
xz

x zc

 →⑥ 

 (2-36) 

The first term on the right-hand side, ③, can be calculated as  
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( ) ( )
( ) ( )∫ ∫
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+→ −−−
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∂
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−=
ε ζζ

ε
η

ηξ

ηξφηξφ
ξ

π
x

EL

Y

Y
d

yx
d

x .. 220

2

1

0,,0,,
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2
1

③  

         
( ) ( )

( )
    

0,,0,,
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2
1      

y

-y 220 ∫
+
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ε

ε

ζζ

ε
η

ηε

ηξφηξφ
π
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y
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EL
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1  1
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ε

ε
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ηξφηξφ
ε
η

π
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⎦
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⎠
⎞

⎜
⎝
⎛ −
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y

y
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−−−

−Δ−+Δ

∂
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1 22..

0,,0,,
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1  

Y

Y

x

EL yx
d

x
d

ηξ

ηξφηξφ
ηξ

π
ζζε

     

           ( ) ([ 0,,0,,
2
1

−Δ−+Δ−= ηξφηξφ
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( ) ( )

( ) ( )[ ]∫ ∫ −Δ−+Δ
−−−

−
+

x

EL

Y

Y yx

xdd
. 22

2

1

0,,0,,
2
1  ηξφηξφ

ηξ

ξηξ
π ζζ  

 (2-37)   

The second term ④ on the right-hand side of Eq. (2-36) can be written as 
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         (2-38) 

Since the term in the form of goes to zero as , the third and the forth 

terms ⑤ and ⑥ on the right-hand side of Eq. (2-36) can be ignored. 

 ),( yxGz × 0→z
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Therefore, one obtains 
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                  ( ) ( ) ( )0,,0,,, −Δ++Δ=Δ yxyxyxu xxs φφ    (2-40) 

                  ( ) ( ) ( )0,,0,,, −Δ−+Δ=Δ yxyxyxw zzs φφ     (2-41) 

   Similarly, by differentiating both side of Eq. (2-35) with respect to z and by adding 

the value of the resulting ( )zyxz ,,φΔ  at 0+=z  and 0−=z , one obtains 

 

( ) ( )  0,,0,, −Δ++Δ yxyx zz φφ  

( ) ( )
( ) ( )[ ]∫∫ −Δ−+Δ

−−−−∂
∂

−=
+→ 1

0,,0,,1lim
2
1

2220 τ ζζ ηξηξφηξφ
ηξπ

dd
zyxzz

 →⑦ 

  
( ) ( )

( ) ( )[ ]∫∫ −Δ−+Δ
−−−−∂

∂
−

−→ 1

0,,0,,1lim
2
1

2220 τ ζζ ηξηξφηξφ
ηξπ

dd
zyxzz

 →⑧ 

  ( )
( )[ ] ( ) ( )[ ]  0,,0,,lim

2
1 

1 220
ηξηξφηξφ

η
ξ

π ξξτ
dd

rzy
xz

z c
z

−Δ−+Δ
+−
−

∂
∂

+ ∫∫+→
 →⑨ 

  ( )
( )[ ] ( ) ( )[ ]  0,,0,,lim

2
1

1 220
ηξηξφηξφ

η
ξ

π ξξτ
dd

rzy
xz

z c
z

−Δ−+Δ
+−
−

∂
∂

+ ∫∫−→
 →⑩ 

  (2-42) 

The first term ⑦ of the right-hand side in Eq. (2-42) can be written as   
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Furthermore,  

          
( )

( ) ( )
η

ηξ

ηξ

επ
ε

εε
d

zyx

w

z

z
y

y

s

z ∫
+

−→+→ −−−−

Δ

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

+

⋅−
−=

2222200

,2
2
1

2
1limlim⑪        

           π
ε
η

π

ε

ε

=⎥⎦
⎤

⎢⎣
⎡ −
−−=

+

−

−
y

y

y1sin
2
1    

 

 (2-44) 

and 
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thus 

                             (2-46) π=+⑫⑪ 
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In the same manner, the second term ⑧ on the right-hand side in Eq. (2-42) becomes 

π− , and thus 

                             (2-47) 0 =+⑧⑦

Since the third term ⑨ on the right-hand side of Eq. (2-42) can be modified as  
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                                      (2-48) 

The third term ⑨ can be added to the fourth term ⑩ as   
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Therefore, one obtains 
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                  ( ) ( ) ( )0,,0,,, −Δ−+Δ=Δ yxyxyxu xxa φφ      (2-51) 

                  ( ) ( ) ( )0,,0,,, −Δ++Δ=Δ yxyxyxw zza φφ   (2-52) 

   By solving Eqs. (2-39) and (2-50) with the boundary conditions suΔ  and , the 

geometry related terms  and 

auΔ

swΔ awΔ  can be obtained. The original boundary 

condition, Eq. (2-12), is now transformed to Eqs. (2-40) and (2-51). The geometry 

correction, Eq. (2-13), is finally given by Eqs. (2-41) and (2-52) where  and  

represent the derivatives of the thickness and camber corrections, respectively. 

swΔ awΔ

   The integrated value of the thickness correction in itself, however, does not satisfy 

the closure condition at the trailing edge. In this study, swΔ  are modified so as to 

satisfy the closure condition at the trailing edge. Modification is performed by the 

following equation; 

             ( ) ( )
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l
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yxwyxw
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..

..mod
,

,,
ξξ

  (2-53)  

where l is a local chord length and dx  is a chord length divided by number of panels at 

each spanwise location. 

   Then, the geometry correction can be computed by performing the numerical 

integration in the x direction. 

             ( ) ( ) ( )∫ ∫ Δ±Δ=Δ ±

x

EL
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EL sa dywdywyxz
. ..

mod ,
2
1,

2
1, ξξξξ  (2-54) 
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   By the way, since the Eqs. (2-39) and (2-50) are based on the linearized potential 

equation, they become invalid where the vorticity is generated. Such regions are 

typically around the root and tip of the wing. At the wing root, the bilateral symmetry is 

usually assumed for the flow analysis, but 0≠
∂
∂

y
p  for prescribing a pressure 

distribution on a swept wing. This breaks the irrotational flow assumption at the wing 

root. At the wing tip, on the other hand, the flow is naturally rotational due to the wing 

tip vortex. Thus, Eqs. (2-39) and (2-50) are replaced with the lower order 

approximations in those regions. 

 

                        ( ) ( )yxwyxu ss ,, Δ−=Δ    (2-55) 

            ( ) ( )yxuyxw aa ,, Δ−=Δ   (2-56) 

These equations are referred as the supersonic linearized pressure coefficient equation 

[11]. 

 

II-3. Inverse Design Procedure 

   The inverse problem for an aerodynamic shape design is to find a geometry that 

yields a specified surface pressure distribution. The procedure of finding the 

corresponding geometry based on the iterative “residual-correction” concept is 

illustrated in Fig. 2-3. First, a target pressure distribution and an arbitrary initial 

geometry is selected. The flow analysis is performed for the initial wing geometry to 

obtain the pressure distribution. In the present design system, the flow analysis stage 

and the inverse design stage are separated from each other, thus any type of analysis 
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code, even an experiment, can be used for the flow analysis. In this study, an Euler code 

is used. After the flow analysis, the difference between the computed and the target 

pressure distributions is calculated. Using this pressure difference as a boundary 

condition, the geometry correction is obtained through the solution of the 

integrodifferential linearized small perturbation (LSP) equation derived in the previous 

section. By Adding the geometry correction to the initial geometry, a new geometry is 

produced. This process will be iterated until ΔCP becomes sufficiently small.        

 

II-4. Validation of Supersonic Inverse Design Method 

   To validate the formulation of the present supersonic inverse method, design tests 

are performed. The present wing planform is taken from the extended NAL’s 2nd 

baseline configuration of the scaled supersonic experimental airplane program [12]. To 

make isolated wing planform, the wing root is extended to the centerline of the body. As 

shown in Fig. 2-4, the leading-edge sweep angle is about 70°and the leading- and 

trailing-edge kinks are located at 43.9% and 40% spanwise sections, respectively.  

  For the inverse design, this wing planform should be divided into panels. In 

Takanashi’s transonic wing design, the planform is divide into panels with a constant 

size. However, in case of supersonic wing design, the use of the constant panel size is 

inappropriate since the taper ratio of planform is very small. Thus, in this case, the 

chordwise length of panels becomes toward smaller the tip while the spanwise length of 

panels remains constant. In this study, there are 50 panels in the chordwise direction and 

67 in the spanwise direction.   
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   Using NACA1204 and NACA0003 airfoil sections, two wings are created. For these 

wings, the Euler analysis is performed. The Euler code used here utilizes a TVD upwind 

scheme for the spatial discretization of the convective terms and the LU-SGS method 

[13] for the time integration. The topology of the grid is the C-H type with a 

two-dimensional C type grid at each spanwise section. The computational grid is 

generated by an algebraic grid generator. 

   The pressure distribution on the wing based on NACA1204 airfoil is designated to 

the target pressure. The inverse design started from a wing with NACA0003 sections as 

the initial geometry. The design condition is a Mach number of 2.0 and an angle of 

attack of 2.0°. The design result is shown in Fig. 2-5. The chordwise pressure 

distributions and the corresponding airfoil geometries at the 20, 40, 70 and 90% 

spanwise sections of the target, initial and designed wings after 9 inverse cycles are 

plotted. Except at the 90% spanwise section, pressure distributions of the designed 

wing coincide with those of the target wing. Maybe the discrepancies near the tip are 

attributed to the invalidity of the irrotational assumption of the original small 

perturbation equation there.  

   In order to improve the overall convergence, Eqs. (2-37) and (2-48) are replaced 

with the supersonic linearized pressure coefficient equations (2-53) and (2-54) near the 

root and tip sections where the original linearized small perturbation equation does not 

stand. Figure 2-6 shows the area to be dealt with the integral equations and the 

supersonic linearized coefficient equations. The corresponding design results are shown 

in Fig. 2-7. The designed and target pressures coincide with each other even at the 90% 
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spanwise section. To check the convergence, residual pressure differences ( ΔCp ) 

averaged at each spanwise section after 9 inverse design cycles are plotted in Fig. 2-8. 

As shown in the figure, the integral equation derived here gives the best convergence in 

the midspan from 30% to 70% spanwise sections. On the other hand, near the root and 

tip, it gives the worst convergence due to the irrelevant physics. The lower order 

correction based on the supersonic linearized pressure coefficient equation is shown to 

give the better convergence there. Thus, by switching the both equations, the overall 

convergence is greatly improved. These design results confirmed the validity of the 

present method. 

 

II-5. Summary 

   A supersonic inverse design method was developed in this chapter. The 

integrodifferential form of the governing equation was derived. The inverse design was 

executed by integrating this equation numerically on the wing surface. The method was 

extended from Takanashi’s transonic inverse method. Since the present method designs 

camber and thickness corrections at the same time, the nonlinear effect due to the 

thickness distribution to the camber surface is accounted for.  

   In case of three-dimensional problems, the present method was revised by using the 

supersonic linearized pressure coefficient equation near the wing root and tip where the 

irrotational flow assumption does not stand. This greatly improved the convergence of 

the inverse design. Design results confirmed the validity of the present method. 
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Figure 2-1. Geometry relation between normal and co-normal to surface S 
 

 
Figure 2-2. Mach forecone from point P(x,y) intersecting surface τ , triangular 
planform 
 

 
 



 

 
 

Figure 2-3. Procedure of the inverse design method based on the iterative “residual-correction” concept 
 
 

 
 



 

 
Figure 2-4. Wing planform 
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Figure 2-5. Comparison of pressure distributions and corresponding geometries among the target, initial and designed wings (1)  
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Figure 2-6. The area to be dealt with the integral equations and lower order approximations 
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Figure 2-7. Comparison of pressure distributions and wing sections in modified inverse design   
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CCHHAAPPTTEERR  ⅢⅢ  

INVERSE OPTIMIZATION OF SUPERSONIC WING 

DESIGN WITH TWIST SPECIFICATION 

 

 

Ⅲ-1. Introduction 

   In case of inverse design optimization problems [1, 2], the objective of the 

optimization is not a geometry itself but a pressure distribution. To design a wing of a 

high performance, the designer must seek an optimal target pressure distribution first. 

Once the optimal target pressure distribution is specified, the corresponding geometry 

can be found through the inverse design. Thus, it is no exaggeration that the choice of a 

pressure distribution is the most important thing in the inverse design. In this chapter, 

the optimization method for the target pressure distribution will be discussed.  

   The most widely used optimization technique is a gradient-based method. However, 

since the aerodynamic design problems are strongly nonlinear and may have 

discontinuities in objectives as well as constraints, this method cannot meet the 

robustness demanded. On the other hand, Genetic Algorithms (GAs) [3, 4], one of 

Evolutionary Algorithms, uses only objective function information (fitness values) 

instead of derivatives or other auxiliary knowledge. In addition, GAs search from a 

population of the points not from a single point. These features make GAs robust and 

attractive to our aerodynamic design problems.   
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   Furthermore, a wing twist specification technique is introduced to the supersonic 

inverse design method in this study by taking advantage of the non-uniqueness of 

three-dimensional aerodynamic inverse problems. The present non-uniqueness property 

means that there are more than one geometries that yield the prescribed surface pressure 

distribution. This non-uniqueness allows to implement an additional geometry 

constraint during the inverse design process, in particular, the wing twist specification.    

 

Ⅲ-2. Design Goal & Target Pressure Distribution 

   One of the important design goals of SST is an improvement in the lift-to-drag ratio 

(L/D). To obtain higher L/D performance under the required lift, drag reduction is 

considered here. To achieve this goal with the inverse design method, target pressure 

distributions that give a low drag are studied. In general, the total drag consists of the 

lift dependant, friction, wave and pressure drag components. Thus, target pressure 

distributions for the low drag are investigated for each drag component separately here. 

   The first component considered is the lift-dependent drag. Theoretically, load 

distribution integrated in every direction must be elliptic for the minimum 

lift-dependent drag. However, in case of a wing with large sweptback angle, the elliptic 

integrated chordwise load distribution is nearly unattainable. Thus, in this investigation, 

the elliptic integrated load distribution is considered only in the spanwise direction. 

Instead of the elliptic integrated chordwise load distribution, two types of chordwise 

loading patterns are examined for a better target pressure distribution that produces the 

low lift-dependent drag. In this study, simple linear and parabolic shapes of chordwise 
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load distribution will be tested.    

   The second component is the friction drag. The friction drag reaches about a half of 

the total drag in the fully turbulent flow. One of the strategies to reduce the friction drag 

is the utilization of Natural Laminar Flow (NLF) [5, 6, 7]. By preserving NLF on the 

wing surface as long as possible, the friction drag can be reduced. For a wing with a 

large sweptback angle as used for SSTs, the crossflow instability can be a trigger of the 

transition to turbulent as well as the Tollmien-Schliching instability. To minimize the 

crossflow instability, the pressure distribution should have a rapid drop at the leading 

edge followed by a flat distribution toward the trailing edge. 

  The shape of the target pressure distribution for the wave drag reduction is not 

considered here because it wholly depends on the shape of the wing planform. In our 

design, wave drag reduction will be achieved by using the planform that has a subsonic 

leading edge. Furthermore, flow separation can be easily avoided due to the supersonic 

trailing edge of the present planform.     

 

Ⅲ-3. Genetic Algorithms for Multiple Objective (MO) Problems 

   The optimization problem to obtain the low drag target pressure distribution can 

defined as  

Minimize: 

1. Difference of local lift coefficients CL(y) to the elliptic spanwise load 

distribution at 10 spanwise locations from the root to the tip of the wing 
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   The defined problem here is a Multiple Objective (MO) problem [8, 9]. Unlike the 

single objective problem, the solution of the MO problem is not a single point, but a 

family of points known as Pareto-optimal solutions. Each point in this Pareto set is 

optimal in the sense that no improvement can be achieved in any objective without 

degradation in the others.  

   The definition of Pareto optimality is as follow: 

Suppose x0, x1, x2∈Χ (Χ is a feasible region of the problem.) and ( )pfff ,,1 L=  is 

the set of objective functions to be minimized,  

1. x1 is said to be dominated by x2, if  f(x1) is partially less than f(x2), 

i.e., ( ) ( )21 xfxf ii ≥ , for , and pi ,,1L=∀ ( ) ( )21 xfxf ii >   for . pi ,,1L=∃

2. x0 is Pareto optimal, if there doesn’t exist any x∈Χ such that x dominates x0.  
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In Fig. 3-1, the Pareto-optimal solutions to a two-objective problem are illustrated.  

   Since a Pareto-optimal set represents rational solutions to the MO problem, the MO 

solvers are desired to find multiple Pareto solutions in parallel. To meet such a demand, 

the Pareto-ranking approach where selection/production is performed by referring not to 

the fitness values but to the dominance property is introduced to Multiple-Objective 

GAs [3, 9].  

   Additional aspect of such MO solvers is a capability to sample solutions uniformly 

from the Pareto-optimal set. To retain such a property, it is needed to maintain genetic 

diversity. Therefore, the fitness sharing method is also applied to MOGA [9, 10]. In the 

fitness sharing method, the fitness value of each individual is reduced if there exist other 

individuals in its neighborhood, and therefore an individual located in more crowed area 

leaves less offspring. Thus, the populations distributed more uniformly over the 

Pareto-optimal set can be obtained.     

   The pressure distribution is defined by B-spline parameterization [11, 12]. Seven 

points are used to control the upper and the lower surface of the pressure distribution 

respectively, as design variables of the present optimization problem. In the spanwise 

direction, 10 sections are considered. 

   The present MOGA runs for 100 generations with 100 individuals. Figures 3-2 and 

3-3 show the optimized target pressure distribution at the 90% spanwise section and its 

integrated spanwise load distribution, respectively. 
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Ⅲ-4. Design Results  

   Once the target pressure distribution is optimized by GA, the corresponding 

geometry can be obtained through the inverse code. In this investigation, two target 

pressure distributions are considered. The difference between the two target pressure 

distributions is the chordwise loading pattern. One is linear and the other is a parabolic 

shape. Figure 3-4 shows the chordwise loading patterns used in this study. Both target 

pressure distributions have a rapid pressure drop at the leading edge followed by a flat 

distribution for NLF and their integrated spanwise load distributions are elliptic for the 

reduction of the lift-dependent drag as show in Figs. 3-2 and 3-3. In the both designs, 

the extended NAL’s 2nd baseline configuration is used as the initial geometry. The 

design condition is M=2.0 and α=2°. The flow analysis code and the computational 

grid generator are the same as in the previous chapter. 

  
Linear chordwise load distribution 

   Design results after 9 iteration cycles are shown in Fig. 3-5. The chordwise pressure 

distributions and the corresponding airfoil geometries at the 20, 40, 60 and 80% 

spanwise sections of the target, initial and designed wing are plotted. As shown in the 

figure, the pressure distribution of the designed wing converged to the optimized target 

pressure distribution very well at all spanwise sections. The integrated spanwise load 

distribution of the designed wing is plotted in Fig. 3-6. This also converged to the 

elliptic load distribution. Figure 3-7 shows pressure contours on the upper and the lower 

surface of the designed wing. The flat chordwise pressure distribution is realized on the 

upper surface. The isobar pattern is formed along the chordwise direction on the upper 
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surface of the wing due to the elliptic loading.  

  The performance of the designed wing is compared with NAL’s 2nd configuration of 

which the fundamental design tool was Carlson’s method [13]. Figure 3-8 presents CL 

vs. alpha and CD vs. alpha. The lift curve of the designed wing is almost the same as that 

of NAL’s second configuration while the corresponding drag polar is lower than that of 

NAL’s 2nd configuration. Table 3-1 summaries the comparison of CL, CD and L/D at 

design the point. The lift-to-drag ratio of the designed wing is greatly improved.    

 
Parabolic chordwise load distribution 

   Design results by using a parabolic chordwise load distribution are shown in Fig. 

3-9. The chordwise pressure distributions and the corresponding airfoil geometries at 

the 20, 40, 60 and 80% spanwise sections of the target, initial and designed wing are 

plotted. The pressure distribution at each spanwise section converged to that of the 

target. As shown in Fig. 3-10, the integrated spanwise load distribution also appears 

elliptic. In Table 3-2, the CL, CD and L/D of the designed wing are compared with those 

of NAL’s 2nd wing. Unlike the linear chordwise loading case, L/D decreases slightly. 

From these results, in this practical design problem, the linear chordwise load 

distribution is considered better for the lift-dependent drag reduction. 

 

Ⅲ-5. Twist Specified Inverse Design (TSID) 

   In Fig. 3-11, the trailing-edge line of the designed wing is plotted. From the 

manufacturer’s point of view, it will be very difficult to process such a wavy 

configuration precisely. More smooth and simple geometry is preferable. To eliminate a 
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wavy design, the non-uniqueness of the three-dimensional aerodynamic inverse 

problem is utilized here.  

   The non-uniqueness means that there are more than one geometry solutions yielding 

the prescribed target pressure distribution as illustrated in Fig. 3-12. Then, a designer 

may be able to choose a favorable geometry among these solution geometries. The 

present inverse method cannot find a favorable geometry by itself. An additional 

geometry constraint is thus required. In this study, a wing twist specification is applied 

to the present inverse method as an additional geometry constraint.    

   The procedure of the twist specification inverse design (TSID) is shown in Fig. 3-13. 

In the present TSID:  

 

1. The initial wing geometry must have the same wing twist expected to be 

designed. 

2. The corrected camber line is rotated around the leading edge to maintain  

the specified wing twist. 

 

   TSID was performed with the same target pressure distribution used in the linear 

chordwise loading case. The design condition is M=2.0 and α= 2.0°. The 

trailing-edge line of the initial wing used in TSID is compared with that of the twist-free 

design results in Fig. 3-14. The trailing line of the twist specification design is much 

smoother than that of the twist-free design. 

   Figure 3-15 shows comparisons of pressure distributions and wing sections between 

the twist-specified design and the twist-free design. Although the pressure distributions 
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coincide with each other, the corresponding wing sections are different. By using TSID 

design, the wing geometry that has the specified twist is obtained. 

Ⅲ-6. Summary 

   In this chapter, the optimization method for target pressure distribution was 

investigated. GA used the Pareto-ranking approach and the fitness sharing method for 

the successful application to the Multiple Objective problems.  

  The shapes of target pressure distributions that give minimum drag have been studied. 

For the lift-dependent drag reduction, elliptic spanwise loading was specified. The 

chordwise loading patterns were also examined. As a result, in practical design 

problems, the linear chordwise loading pattern found a better for the lift-dependent drag 

reduction. For the friction reduction, the Natural Laminar Flow concept was applied. 

   In addition, the twist specification technique was introduced to the supersonic 

inverse design method by taking advantage of the non-uniqueness of the 

three-dimensional aerodynamic inverse problems. This made it possible for a designer 

to select a favorable geometry among the many solution geometries of the 

three-dimensional aerodynamic inverse problem. In other words, the twist of the initial 

wing can be maintained throughout the inverse design. Thus, a favorable wing can be 

designed by choosing such an initial wing with a smooth trailing edge line. The design 

result confirmed the usefulness of the TSID design over the twist-free design.       
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Figure 3-1. Feasible region of function space and the Pareto-optimal solutions 
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Figure 3-3. Spanwise load distribution of the target pressure distribution 
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Figure 3-4. Chordwise loading patterns of target pressure distributions
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Figure 3-5. Comparison of pressure distributions and corresponding geometries among the target, initial and designed wings (1)
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Figure 3-5. Comparison of pressure distributions and corresponding wing geometries among the target, initial and designed wings (2) 
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Figure 3-6. Comparison of integrated spanwise load distributions among the target, initial and designed wings 
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Figure 3-7. Pressure contours of the designed wing 
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Figure 3-8. Comparison of performance coefficients between NAL’s 2nd and designed wings  
 
 

 
 
 
 



 
 
 
 
 
 

 NAL’s 2nd wing Designed wing 
C 0.10062 0.10198 L

C 0.00686 0.00570 D

L/D     14.66764 17.8912 
 

 
Table 3-1. Performance comparison between NAL’s 2nd configuration and the designed wing 
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Figure 3-9. Comparison of pressure distributions and corresponding geometries among the target, initial and designed wings (1) 
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Figure 3-9. Comparison of pressure distributions and corresponding geometries among the target, initial and designed wings (2) 
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Figure 3-10. Comparison of integrated spanwise load distributions among the target, initial and designed wings  
 

 
 
 
 



 
 
 
 
 
 
 

 NAL’s 2nd wing Designed wing 
C 0.10062 0.10205 L

C 0.00686 0.00705 D

L/D     14.66764 14.84700 
 
 

  Table 3-2. Performance comparison between NAL’s 2nd configuration and the designed wing 
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    Figure 3-11. Trailing-edge line of the designed wing by the inverse method 
 

 
 
 
 



 
 

Figure 3-12. Non-uniqueness of the three-dimensional inverse problem 
 

 
 
 
 



 

 
 

Figure 3-13. Procedure of the proposed twist-specified inverse design 
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Figure 3-14. Comparison of trailing-edge lines between twist-free and twist-specified design methods 
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Figure 3-15. Comparison of pressure distributions and corresponding geometries between twist-free and twist-specified inverse design   
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Figure 3-15. Comparison of pressure distributions and corresponding geometries between twist-free and twist-specified inverse design   
           methods (2) 

 
 
 
 



CCHHAAPPTTEERR  ⅣⅣ  

APPLICATION OF INVERSE DESIGN METHOD TO 

COMPLICATED CONFIGURATIONS 

 
 

Ⅳ-1. Introduction 

   This chapter discusses an extension of the proposed inverse design method to 

complicated aircraft configurations, such as wing-fuselage and wing-nacelle 

configurations. In the traditional design methods for wings at supersonic speed [1, 2], 

not only a nonlinear effect of wing thickness distribution but also interference with 

components of aircraft, such as fuselage and nacelles, degenerate the warp performance 

optimized by the linear theory. To design a SST configuration more accurately, a wing 

design method that also accounts for the interference with other aircraft components is 

indispensable. The present inverse design method based on the iterative 

“residual-correction” concept can be extended to design a wing under the consideration 

of interference with other components.  

   In this chapter, the present inverse design method will be applied to the 

wing-fuselage and the wing-nacelle configurations. The present inverse method has 

been implemented into NAL SST design system. The design result of the wing-fuselage 

configuration [3] was presented here by courtesy of the NAL SST design team. They 

utilized the inverse design method to find a wing for a natural laminar flow (NFL) in  

their design process. The outline of NAL’s scaled supersonic experimental aircraft 
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design process [4] is reviewed in Appendix.    

   Another indispensable tool required for dealing with the complicated configurations 

is an efficient grid generator. For complicated configurations, the grid generation is very 

time consuming. In order to resolve this problem, the unstructured grid approach is 

utilized to the inverse design of a wing-nacelle configuration, since the unstructured 

grid approach has a great versatility and geometrical flexibility.  

    

Ⅳ-2. Inverse Design of Wing-Fuselage Configuration 

   In this section, the inverse design of a wing-fuselage configuration is presented by 

courtesy of NAL. The outline of the NAL SST design process is reviewed in Appendix. 

The initial wing was taken from the NAL’s 2nd baseline configuration that had a 

NACA66003 thickness distribution. The specified target pressure distribution has a 

rapid pressure drop near the leading edge followed by a flat pressure distribution toward 

the trailing edge to realize NLF. The design condition is a Mach number of 2.0 and an 

angle of attack of 2.0°. The design considers the geometry correction on the wing 

surface only, while the flow analysis is performed about the wing-fuselage configuration 

to obtain the pressure distribution on the wing surface under the influence of the 

fuselage. The flow analysis was executed by using NAL’s Navier-Stokes code [5]. In 

NAL’s code, the AUSMDV scheme [6] is applied for the discretization of the 

convective terms. For the time integration, the explicit Euler method is adopted. The 

Baldwin-Lomax turbulence model is used.  

   The main feature of NAL’s code is the utilization of multiple blocks [7]. Figure 4-1 
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shows the body surface and the outer grid surfaces used in this calculation. 

Computational space is divided into fourteen blocks; six blocks on the body surface, 

four blocks on the wing surfaces and four blocks in the wing wake domain. 

  In this inverse design, two geometry constraints [8] are implemented. First, the 

twisting axis of the wing is requested to go through 70% chord of every spanwise 

section. To satisfy this constraint, the designed wing sections are translated in the z 

direction so as to 70% chord of every section lie on the straight line. The other 

constraint is that . The geometry correction is performed for the 

designed wing at each iteration steps so as to satisfy this thickness constraints.      

0370030 max .t/c. ≤≤

   The comparisons of pressure distributions and corresponding geometries among the 

target, initial and designed wings after 10 inverse cycles are plotted in Fig. 4-2. The 

pressure distribution of the designed wing is close to that of the target.   

   The integrated spanwise loads are plotted in Fig. 4-3. The loads of the designed 

wing also coincide with those of the target that is elliptic for the minimum induced drag. 

These results confirmed the validity of applying the present inverse design method that 

is based on the iterative “residual-correction” concept to a wing geometry under the 

influence of the fuselage.          

 

Ⅳ-3. Flow Filed Analysis of Wing-Nacelle Configuration      

   One of the difficulties in the inverse design of a complicated configuration is 

generation of a computational grid around geometry. The grid generation around a 

complex configuration is a very time-consuming procedure. According to NAL SST 
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design team, it took three days to generate a multiblock computational grid used in the 

wing-fuselage design. To construct an efficient design system, a more rapid and robust 

grid generation tool is required.  

   In order to resolve this problem, an unstructured grid approach [9] is adopted to a 

wing-nacelle configuration design here. The surface grid of a three-dimensional 

configuration is generated by the direct surface meshing method [10]. The method 

applied the advancing front approach directly to the geometry surface in the physical 

space. Since it does not rely on a mapping, the mesh size can be automatically 

controlled by adapting to the local surface curvature. Without mapping, surface 

definition for meshing can be more flexible. Figure 4-4 shows the surface grid around 

the wing-nacelle configuration. The nacelles have a circular cross section and a kink at 

50% location.   

  There is an additional problem on accurately representing the true geometry, 

especially, at the leading edge near the outer wing where its local curvature is very large. 

In this study, the structured grid is adopted for the surface grid near the leading edge. By 

drawing a diagonal in each rectangular structured grid, triangles for the unstructured 

grid can be generated. Figure 4-5 shows the airfoils sections at 80% spanwise sections 

represented by the original unstructured grid and the present hybrid grid. As shown in 

figure, the present grid represents the real geometry more accurately.   

   The tetrahedral volume grid is generated by applying the Delaunay approach [11]. 

Figure 4-6 shows the volume grid around the wing-nacelle configuration. Even in a very 

narrow region inside of the nacelle, the tetrahedral mesh is automatically generated. 
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Overall workload required for the generation of the grid is less than one day.  

   The flow analysis is performed by an Euler code. The governing equations are given 

in the non-dimensional integral form as follows:  

                    ∫ ∫Ω Ω∂
=⋅+

∂
∂ 0  )( dSnQFdVQ
t

         (4-1) 

where  is the vector of the conservative variables; [ TevuQ  w, , , , ρρρρ= ] ρ  is the 

density;  are the velocity components in the x, y, z directions, respectively; and e 

is the total energy. The vector  is the inviscid flux vector; and n is the outward 

normal to , which is the boundary of the control volume 

wvu  , ,

)(QF

Ω∂ Ω . This system is 

completed by the perfect gas equation of state. The equations are solved by a 

finite-volume cell-vertex scheme and the LU-SGS method [12, 13] for the spatial 

discretization and time integration, respectively. 

   To validate the unstructured grid and the Euler solver used here, the flow field 

around the isolated wing designed in Chapter 3 is computed again. The pressure 

distributions obtained from the structured and unstructured grid approaches are plotted 

in Fig. 4-7. They appear identical and the resolution of the unstructured grid approach is 

found comparable to that of the structured grid approach. 

  

Ⅳ-4. Inverse Design of Wing-Nacelle Configuration 

   With this unstructured approach, the inverse design of the wing-nacelle 

configuration was performed. To verify the inverse method, initial geometry was created 

by attaching nacelles described in the previous section to the initial wing described in 
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Chapter 3. The target pressure distribution was generated from the wing designed in 

Chapter 3 by attaching the same nacelles. The design condition is a Mach number of 2.0 

and an angle of attack of 2.0°.  

   In this case, due to strong shock waves generated from the front part of the nacelles 

on the lower surface of the wing, the flow field in this region becomes very complicated. 

Thus, in this region, the integral Eqs. (2-37) and (2-48) are replaced by the lower 

approximation Eqs. (2-53) and (2-54) as done for near the root and tip of the wing. 

Figure 4-8 illustrates the areas to be dealt with these equations.   

   The inverse design results after 5 iteration steps are shown in Fig. 4-9. The 

chordwise pressure distributions and the corresponding airfoil geometries at the 20, 40, 

60 and 80% spanwise sections of the target, initial and designed wings are plotted. The 

pressure distribution of the designed configuration converges to that of the target very 

well. Minor discrepancy in the geometries may attribute to the non-uniqueness of the 

three-dimensional inverse problem. TSID was not executed here yet. With a proper 

treatment of shock waves generated from the nacelles, the present inverse method is 

confirmed to be applicable to the wing-nacelle configuration design. 

 

Ⅳ-5. Summary  

   The present inverse design method was applied to complicated aircraft 

configurations. In this chapter, design results of wing-fuselage and wing-nacelle 

configurations were presented. In the design performed by the NAL SST design team, 

the inverse design method was used to find the wing design under the influence of the 
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fuselage. Design results confirmed the validity of applying the present inverse design 

method to the complicated configurations. 

   One of the difficulties in applying the inverse design to complicated aircraft 

configurations is the generation of computational grids. The grid generation around a 

complex configuration is a very time-consuming procedure. In order to resolve this 

problem, the unstructured grid approach was considered because of a great versatility 

and geometrical flexibility. The wing-nacelle configuration design was then performed. 

The workload required for the grid generation at each inverse design cycle was reduced 

from three days to less than one day. The inverse design coupled with the unstructured 

grid approach was confirmed to be practical.    
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Figure 4-1. Computational grid 
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Figure 4-2. Comparison of pressure distributions and corresponding geometries among the target, initial and designed wings (1) 
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Figure 4-2. Comparison of pressure distributions and corresponding geometries among the target, initial, designed wings (2) 
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Figure 4-3. Comparison of integrated spanwise load distributions among the target, initial and designed wings 
 

 
 
 



Figure 4-4. Surface Grid 
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Figure 4-5. Comparison of the ability to represent the real geometry  
 
 
 

 
 
 



 
Figure 4-6. Volume grid around the wing-nacelle configuration  

 
 
 



-0.2

-0.1

0

0.1

0.2

0.3

0.4
0.8 0.85 0.9 0.95 1 1.05 1.1

70%

structured
unstructured

C
p

x/c
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-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3
0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

30%

structured
unstructured

C
p

x/c
 
 

 



             approximations.  

 

Figure 4-8. The area to be dealt with the integral equations and the lower order 
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  Figure 4-9. Comparison of pressure distributions and corresponding geometries among the target, initial and designed wings (1) 
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CONCLUSION 

 

 

For the successful design of next generation SST, an efficient and robust aerodynamic 

wing design method was developed in this study. The present method was extended 

from Takanashi’s transonic inverse design method and successfully applied to the 

supersonic wing design problems.  

   In Chapter 2, the mathematical formulation for the supersonic inverse problem was 

constructed. The geometry correction for the inverse design can be obtained from the 

surface integrals on the wing. To validate the formulation, the design tests were 

performed. Although the midspan region was designed successfully by the 

integrodifferential equations derived here, near the root and tip regions had a problem of 

convergence to the target pressure distribution. Because the integral equations derived 

here are based on the linearized potential equation, they become invalid near the root 

and tip of the wing where the vorticity tends to be generated. In order to eliminate this 

convergence problem, the integral equations were revised by using the supersonic 

linearized pressure coefficient equations near the wing root and tip. The results of the 

design tests showed the improved convergence from the root to tip and confirmed the 

validity of the present approach.  

   In Chapter 3, the optimization method was investigated for target pressure 

distribution to be prescribed for the inverse method. Genetic Algorithms (GAs) was 
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selected for the optimization of the target pressure distribution. The present GA adapted 

the Pareto-ranking approach and the fitness sharing method for the successful 

application to the multiobjective problems.  

   Based on the design policies, the optimization problem was defined as a 

multiobjective problem of the friction and lift-dependent drag minimization. In order to 

reduce the friction drag, the Natural Laminar Flow (NLF) concept was applied. For the 

reduction of lift-dependent drag, the elliptic spanwise loading was specified. The shape 

of chordwise loading pattern for the lift-dependent drag reduction was also studied here. 

As a result, the linear chordwise loading pattern with the elliptic spanwise load 

distribution found a better for drag minimization in supersonic wing design.  

   Twist specification was introduced to the present inverse design method by taking 

advantage of the non-uniqueness of three-dimensional aerodynamic inverse problems. 

Due to this technique, the designer is able to select a favorable geometry among the 

many solution geometries of the three-dimensional aerodynamic inverse problem, in 

particular, the wing with the specified twist.    

   In Chapter 4, the proposed inverse design method was extended to the design of the 

complicated configurations. In this study, supersonic inverse design method was applied 

to the wing-fuselage and the wing-nacelle configurations.  

   The wing-fuselage configuration design was performed in NAL’s scaled supersonic 

experimental aircraft project. The flow analysis around the wing-fuselage was 

performed by using a multiblock approach. The iterative “residual-correction” concept 

adapted in the present inverse method allowed the wing design under the influence of 
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the fuselage. The inverse method was found useful to design a wing utilizing the NFL 

concept.  

   In order to resolve the difficulty of the grid generation around a complicated aircraft 

configuration, the unstructured grid approach was considered because of its great 

versatility and geometry flexibility. The wing-nacelle configuration design was then 

performed with the unstructured grid approach. The time required for the grid 

generation at each inverse design cycle was reduced drastically. With a proper treatment 

of shock waves generated from the nacelles, the present inverse method worked also 

successfully in the wing-nacelle configuration design. The inverse design method 

coupled with the unstructured approach was confirmed practical for the complicated 

aircraft configuration design. 
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Appendix 

 

   The present inverse method has been developed under the cooperation with NAL 

SST Program. This Appendix explains the outline of NAL's scaled experimental aircraft 

design and how the present method was integrated into the NAL design system. Figures 

in this Appendix are presented by courtesy of NAL.  

   NAL’s SST design process comprised two stages. First stage was a baseline 

configuration design. The baseline configuration was designed as an isolated wing first 

and then a simple fuselage with circular cross section was attached to this. The second 

stage was the refinement of the baseline configuration to improve L/D. In this stage, 

inverse design method was introduced. The following design policy was determined by 

Yoshida et. al. [A1]. 

 

1. Design of a Baseline Configuration 

Planform Design 

   In total of 99 different planforms with an identical area in a specified aspect ratio 

range from 1.8 to 2.2 were examined first. For every planform, a drag-due-to-lift 

parameter K defined by Eq. (A-1) was evaluated using the supersonic lifting surface 

theory,  

                      ( )2
oo LLDD CCKCC −+=    (A-1)     

where   denotes the minimum drag coefficients, 
oDC LL CC

o
=  at . Among these 

oDC
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planforms, eight planforms with lower K values were selected for the next step. 

Warp Design 

   For each of the eight selected planforms, a warp shape was next optimized by 

Carlson’s method [A2]. The method sought a camber surface that yields an optimal load 

distribution for minimizing the lift-dependent drag. A planform of an aspect ratio of 2.2 

with 66.0 and 61.2 degree sweptback angles at inner and outer leading edge lines, 

respectively, was finally selected as a planform for the baseline configuration. The 

baseline wing geometry was produced by adding a thickness distribution of NACA0003 

airfoil to the optimized camber surface.   

Fuselage Design 

   A simple body with circular cross sections was combined with the optimized wing. 

To minimize a wave drag, the supersonic area rule [A3] was applied. This wing-fuselage 

configuration is the baseline configuration of NAL’s SST program. 

     

2. Refinement of the Baseline Configuration 

Quasi-Inverse Design 

   The first strategy of the wing refinement in the second design stage was to recover 

the optimized warp performance obtained by the linear theory. Figure A-1 shows a 

comparison of loading contours between the isolated wing and the wing-fuselage 

configurations. As shown in the figure, the wing-fuselage configuration lost the 

optimized load pattern due to the interference with the fuselage.  

   To recover the optimized warp effect here, a quasi-inverse design method was used. 
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This method calculated the new camber line for the wing-fuselage configuration using a 

supersonic small disturbance theory [A4]. 

                         oldett PPP −=Δ arg    (A-2) 

                      
( )

P
Mdx

xdzc Δ
−

=Δ
1

4
2

ε    (A-3) 

                            (A-4) c
old
c

new
c zzz Δ+=

where P , zc and ε  denotes load, camber and relaxation constant for camber correction, 

respectively. 

   The present target load distribution for the wing-fuselage configuration was 

computed by Mitsubishi Heavy Industries, Ltd. (MHI) [A5]. A new wing was created by 

adding the original thickness distribution (NACA0003) to the new camber lines. Figure 

A-2 shows the wing sections of the designed wing at the 20, 40, 60 and 80% spanwise 

locations.    

Natural Laminar Flow and Inverse Design 

   The second strategy of the wing refinement was reduction of friction drag through a 

natural laminar flow (NLF). To preserve NFL on the wing surface longer, the wing 

thickness distribution was changed from NACA0003 to NACA66003 airfoil thickness 

distribution on which the turbulent transition expected to be delayed downstream. This 

was named as NAL’s 2nd baseline configuration. Figure A-3 plots the resulting airfoil 

sections at the 20, 40, 60 and 80% spanwise locations. However, it didn’t delay 

turbulence transition as expected.  

   The present inverse design was thus applied to find a proper wing geometry for NLF. 
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The target pressure distribution for NLF on the upper surface of the wing used in this 

design was defined by Kawasaki Heavy Industries, Ltd. (KHI) [A6]. The target has a 

rapid pressure drop near the leading edge followed by a flat pressure distribution toward 

the trailing edge. The lower surface pressure distribution was specified by subtracting 

the optimal load distribution previously suggested by MHI. With this target pressure 

distribution, the inverse design was performed. In this case, the integral equations were 

applied to the entire wing surface. The modification with the lower order 

approximations was not used yet. The geometry obtained here became NAL’s 3rd 

baselines configuration. Figure A-4 shows the pressure distributions and corresponding 

geometries at the 20, 40, 60 and 80% spanwise sections after 5 iterations in the inverse 

design. Although the pressure distribution of the designed wing became close to the 

target pressure distribution, there still existed discrepancies between them. There were 

several difficulties in the target pressure distribution. The specified target pressure 

distribution had a spike at the leading edge on the lower surface of the wing. This 

produces a beak-like leading edge. This kind of the leading edge is unacceptable from 

the structural point of view. In addition, the wing thickness near the tip became too thin. 

Thus, the target pressure used for 3rd baseline configuration was further modified to 

shape the leading edge appropriately and to meet the thickness constraint. The 

modifications were carefully carried out so as not to disturb NLF. 

   With this modified target pressure distribution, the inverse design was performed 

again [A7]. In this case, the lower order approximation was applied to near the wing tip. 

The results of inverse design with the modified target pressure were presented in Fig. 
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4-2 in Sec. Ⅳ-2. For NAL’s final wing configuration, some geometry corrections are 

further performed to this geometry so as to satisfy several structural requirements. 
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Figure A-1. Comparison of load distributions between the isolated wing and the wing-fuselage configuration 
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Figure A-2. Wing sections of the NAL’s 1st configuration 
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Figure A-3. Wing sections of the NAL’s 2nd configuration  
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Figure A-4. Comparison of pressure distributions and corresponding geometries among the target, initial and designed wings (1) 
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 Figure A-4. Comparison of pressure distributions and corresponding geometries among the target, initial and designed wings (2) 
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