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ABSTRACT 
 
The objective of the present study is to demonstrate 
performances of Evolutionary Algorithms (EAs) and 
conventional gradient-based methods for finding Pareto 
fronts. The multiobjective optimization algorithms are 
applied to analytical test problems as well as to the 
real-world problems of a compressor design. The 
comparison results clearly indicate the superiority of 
EAs in finding tradeoffs. 
 

INTRODUCTION 
 
A typical multiobjective problem (MOP) 
simultaneously involves some competing objectives: 
for example in the compressor design, maximization of 
efficiency, maximization of mass flow rate, 
maximization of total pressure ratio, minimization of 
weight, maximization of durability, etc. 

While single objective optimization problems may 
have a unique optimal solution, MOPs present a set of 
compromised solutions, largely known as the tradeoff 
surface, Pareto-optimal solutions or non-dominated 
solutions1. These solutions are optimal in the sense that 
no other solutions in the search space are superior to 
them when all objectives are considered (Fig. 1). The 
goal of MOPs is to find as many Pareto-optimal 
solutions as possible to reveal tradeoff information 
among different objectives. Once such solutions are 
obtained, the higher-level decision-maker will be able 
to choose a final design with further considerations. 

Traditional design methods such as the 
gradient-based methods2,3 are single objective 

optimization methods that optimize only one objective. 
These methods usually start with a single baseline 
design and use local gradient information of the 
objective function with respect to changes in the design 
variables to calculate a search direction. When these 
methods are applied to a MOP, the problem is 
transformed into a single objective optimization 
problem by combining multiple objectives into a single 
objective typically using a weighted sum method. For 
example, to minimize competing functions f1 and f2, 
these objective functions are combined into a scalar 
function F as 

  2211 fwfwF ⋅+⋅=     (1) 
This approach, however, can find only one of the 
Pareto-optimal solutions corresponding to each set of 
the weights w1 and w2. Therefore, one must run many 
optimizations by trial and error adjusting the weights to 
get Pareto-optimal solutions uniformly over the 
potential Pareto-front. This is considerably time 
consuming in terms of human time. What is more, there 
is no guarantee that uniform Pareto-optimal solutions 
can be obtained. For example, when this approach is 
applied to a MOP that has concave tradeoff surface, it 
converges to two extreme optimums without showing 
any tradeoff information between the objectives (Fig. 
2). 

Evolutionary Algorithms (EAs, for example, see 
[4,5]), on the other hand, are particularly suited for 
MOPs. By maintaining a population of design 
candidates and using a fitness assignment method 
based on the Pareto-optimality concept, they can 
uniformly sample various Pareto-optimal solutions in 
one optimization without converting a MOP into a 
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single objective problem. In addition, EAs have other 
advantages such as robustness, efficiency, as well as 
suitability for parallel computing. Due to these 
advantages, EAs are a unique and attractive approach to 
real-world design optimization problems such as the 
multi-stage compressor design optimization problem. 
Recently, EAs have been successfully applied to single 
objective and multiobjective aerospace design 
optimization problems6-10.  

The objective of the present study is to make 
comparisons of EAs and conventional gradient-based 
methods to find Pareto fronts and to confirm the 
uniqueness of the multiobjective evolutionary 
algorithm (MOEA). The Multiobjective optimization 
algorithms are applied to analytical test problems as 
well as to the real-world problem of a compressor 
design. 
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Fig. 1 The concept of Pareto-optimality. This is an 
example of MOPs, which minimizes two conflicting 
objectives f1 and f2. This MOP has innumerable 
compromised Pareto-optimal solutions such as solutions 
A, B, and C. These solutions are optimal in the sense 
that there is no better solution in both objectives. One 
cannot say which is better among these Pareto-optimal 
solutions because improvement in one objective 
degrades another. 
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Fig. 2 Weighted-sum method applied to a MOP having a 
concave Pareto-front. Any combination of weights w1 

and w2 would results in the extreme optimum A or B. A 
gradient-based method may stack in a local optimum C 
due to complexity of the objective function 
distributions.  
 

 
ARMOGA 

 
To reduce the large computational burden, the 
reduction of the total number of evaluations is needed.  
On the other hand, a large string length is necessary for 
real parameter problems. ARGA, which originally 
proposed by Arakawa and Hagiwara, is a quite unique 
approach to solve such problems efficiently11,12. 
Real-coded ARGA has been developed and applied to 
aerodynamic optimization problems8,13. 

ARMOGA has been developed based on ARGA to 
deal with multiple Pareto solutions for the 
multi-objective optimization. The main difference 
between ARMOGA and conventional Multi-Objective 
Genetic Algorithm (MOGA) is the introduction of the 
range adaptation. The flowchart of present ARMOGA 
is shown in Fig. 3. Population is reinitialized every M 
generations for the range adaptation so that the 
population advances toward promising regions.  

The basis of ARMOGA is the same as ARGA, but a 
straightforward extension may cause a problem in the 
diversity of the population. To better preserve the 
diversity of solution candidates, the normal distribution 
for encoding is changed. Figure 4 shows the search 
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range with the distribution of the probability. Plateau 
regions are defined by the design ranges of chosen 
solutions. Then the Normal distribution is considered 
the side of the plateau.  

The advantages of ARMOGA are following: It is 
possible to obtain Pareto solutions efficiently because 
of the concentrated search of the probable design space. 
In addition, it prevents the convergence to similar 
solutions. On the other hand, it may be difficult to avoid 
the local minima, if global solutions are not included in 
the present search region. Re-initialization also causes 
the time-penalty.  
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Fig. 3 Flowchart of ARMOGA. 
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Fig. 4 Sketch of range adaptation. 
 

 
Analytical Test Problems 

 
In this section, ARMOGA is evaluated by applying it to 
three different types of MO analytical problems. 
ARMOGA is compared with another MOEA and two 
gradient-based methods: NSGA214 (a widely-used 
MOEA), SQP (efficient gradient-based method) and 
DHC (robust gradient-based method). SQP and DHC in 
SOFT15 (Smart Optimization For Turbomachinery) 
developed by Rolls-Royce plc and University 

Technology Center are used. Those gradient-based 
methods require the following utility function to solve 
MO problems. 

F = α⋅f1 + β⋅f2          (2) 

The search performance of ARMOGA is evaluated 
in terms of improvement in Pareto front, reasonable 
spread in Pareto front and more solutions in Pareto 
front as shown in Fig. 5. Those characteristics will help 
to understand the trade-off between objectives easily. 
For the purpose of aerodynamic optimization, 
ARMOGA and NSGA2 use comparatively small 
number of evaluations.  
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Fig. 5 Fonseca’s Pareto-ranking method for a 
multiobjective minimization problem. Because the 
solutions A, B, C are Pareto-optimal these solutions 
rank first. The solutions D and E rank second because 
they are worse than the solutions B and C on both 
objectives, respectively. The solution F ranks third 
because two solutions (A and B) are better than the 
solution F on both objectives.  
 
Convex Pareto front case: 
This problem has two objective functions to be 
minimized as formulated below.  
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subject to , i=1,2.      (3) 44 ≤≤− ix

 
Pareto-optimal solutions have xi in [0,2] and the 
corresponding Pareto front is convex. Therefore, it is 
easy to obtain Global Pareto solutions for 
gradient-based methods. Figures 6 (a) and (b) shows 
the performance of ARMOGA and NSGA2. As GA 
often depends on initial population, three different 
initial populations are used for the comparison. From 
the figures, those two algorithms show the similar 
search performance. Figures 6 (c) and (d) show the 
search history of SQP and DHC. Those two algorithms 
obtain same final Pareto solutions by changing the 
weights of utility function described in Table 1. Only 
the difference is the number of evaluations. SQP could 
obtain final Pareto solutions rapidly. On the other hand, 
DHC requires a large number of evaluations similar to 
MOEAs. 
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(c) SQP                (d) DHC 

 
Fig. 6 Comparison of optimization results shown in the 
objective function space for convex Pareto front case. 

 
 

Table 1 Optimization summary of gradient-based 
methods for convex Pareto front case. 

 (a) SQP              (b) DHC 
SQP call

1.0-1.0 6 0.0 4.0 1.00 1.00
1.0-2.0 9 0.0 4.0 1.78 0.44
2.0-1.0 9 0.0 4.0 0.44 1.78

initial optimal DHC call
1.0-1.0 48 0.0 4.0 1.00 1.00
1.0-2.0 145 0.0 4.0 1.78 0.44
2.0-1.0 132 0.0 4.0 0.44 1.78

initial optimal

 

 
Concave Pareto front case: 

This problem has a concave Pareto front. The 
problem is formulated as follows.  
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Figures 7 (a) and (b) show the non-dominated front of 
ARMOGA and NSGA2. Both GAs can obtain 
approximate Pareto solutions with reasonable spread. 
On the other hand, it is difficult to obtain Pareto 
solutions by the gradient-based methods using weight 
function because a final solution always becomes the 
extreme Pareto solution as shown in Figures 7 (c) – (f). 
Initial points for SQP-1 and SQP-2 are different. SQP-2 
cannot obtain Pareto solutions. DHC-2 starts from the 
same point as SQP-2, but it is able to find the global 
Pareto solutions because DHC is more robust. Table 2 
shows the summary of this optimization based on the 
gradient-based methods. 
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Fig. 7 Comparison of optimization results shown in the 
objective function space of concave Pareto front case. 
 

Table 2 Optimization summary of gradient-based 
methods for concave Pareto front case. 

 (a) SQP-1            (b) DHC-1 
SQP call

1.0-1.0 3 0.63 0.63
1.0-2.0 17 0.63 0.63 0.98 0.00
2.0-1.0 17 0.63 0.63 0.00 0.98
1.0-1.2 26 0.63 0.63 0.98 0.00

initial optimal
DHC call

1.0-1.0 99 0.63 0.63 0.00 0.98
1.0-2.0 113 0.63 0.63 0.98 0.00
2.0-1.0 136 0.63 0.63 0.00 0.98

initial optimal

 
(c) SQP-2            (d) DHC-2 

SQP call
1.0-1.0 6 1.0 1.0
1.0-2.0 3 1.0 1.0
2.0-1.0 3 1.0 1.0

initial optimal DHC call
1.0-1.0 104 1.0 1.0 0.98 0.00
1.0-2.0 100 1.0 1.0 0.98 0.00
2.0-1.0 128 1.0 1.0 0.00 0.98

initial optimal

 

 
Discontinuous Pareto front: 
This problem has a nonconvex as well as disconnected 
Pareto-optimal set. It has three disconnected 
Pareto-optimal fronts and single point (-20,0). 
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ARMOGA can obtain good spread in Pareto front 
compared to NSGA2 as shown in Fig. 8. Figures 8 (c) – 
(f) show the search history of gradient-based methods 
and also Table 3 summarizes the optimization results. 
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Fig. 8 Comparison of optimization results shown in the 
objective function space of discontinuous Pareto front 
case. 
 

Table 3 Optimization summary of gradient-based 
methods for discontinuous Pareto front case. 

 (a) SQP-1            (b) DHC-1 
SQP call

1.0-1.0 14 -20.0 0.0
1.0-2.0 14 -20.0 0.0
2.0-1.0 14 -20.0 0.0

1.0-50.0 97 -20.0 0.0 -9.75 -8.44

initial optimal DHC call
1.0-1.0 115 -20.0 0.0 -14.52 -11.58
1.0-2.0 160 -20.0 0.0 -14.48 -11.62
2.0-1.0 33 -20.0 0.0

1.0-50.0 138 -20.0 0.0 -14.44 -11.63

initial optimal

 
(c) SQP-2            (d) DHC-2 

SQP call
1.0-1.0 43 -8.6 21.6 -7.26 -4.58
1.0-2.0 45 -8.6 21.6 -7.47 -7.57
2.0-1.0 49 -8.6 21.6 -8.40 -7.41
1.0-50.0 59 -8.6 21.6 -7.87 -6.91

initial optimal DHC call
1.0-1.0 170 -8.6 21.6 -14.52 -11.58
1.0-2.0 163 -8.6 21.6 -14.48 -11.62
2.0-1.0 152 -8.6 21.6 -11.64 -9.64

1.0-50.0 170 -8.6 21.6 -11.56 -9.72

initial optimal

 
 
Those three MO test cases show the following: MOEAs 
can find trade-offs effectively. ARMOGA is slightly 
superior to NSGA2 in the present cases. Their 
computational costs are comparable to DHC. On the 
other hand, the gradient-based methods are not suitable 
for the aim of obtaining trade-offs, although DHC is 
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slightly more robust than SQP. GAs may be more useful 
for multi-objective, multi-disciplinary aerodynamic 
optimization. 
 

REAL-WORLD EXAMPLES 
 
Aerodynamic design for cascade airfoils: 
Real-world engineering problems often exhibit 
straightforward convex tradeoffs. This leads to a 
question whether multiobjective optimization really 
needs to address concave and discontinuous Pareto 
fronts. This question is easily answered by a counter 
example below.   

The goal of the compressor design is to produce the 
highest pressure rise at the lowest total pressure loss. In 
addition to these two design goals, the flow turning 
angle is maximized in Ref. 16. The flow turning angle 
is an important design criterion in the classical design 
procedure. In general, the pressure rise increases as the 
flow turning angle increases. However, there is a limit 
in the amount of flow turning due to flow separation, 
causing large total pressure loss.  

The present multiobjective optimization was 
performed to seek cascade airfoil shapes that  
1. Maximize pressure rise as ratio of outlet to inlet 

pressures, P2/P1 
2. Maximize flow turning angle β∆  
3. Minimize total pressure loss ω  

subject to geometric constraints in the airfoil 
thickness and area. The two-dimensional 
Navier-Stokes code was used for the flow evaluation. 
Evolution was simulated for 75 generations with the 
population size of 64. Real-coded MOGA was applied 
because ARMOGA was not available yet. 

The resulting approximate Pareto front is plotted in 
Fig. 9. Tradeoffs projected onto three combinations of 
the two objectives show convex and concave Pareto 
fronts. Those figures show the danger in the use of 
utility function because it is possible to misunderstand 
the trade-off between objectives based on the 
gradient-based methods. 
 
Multi-stage compressor design: 
A design optimization of a four-stage compressor with 
one guide vane, four rotors and four stators is 

demonstrated by using Program UD0300M, which 
solves the system of equations based on the streamline 
curvature method. Complete details of the formulation 
and the solution procedure are given in [17]. 
Real-coded MOGA was also applied18. 

Figure 10 shows the baseline compressor design and 
its computation mesh used for aerodynamic analysis. 
One of the major objectives for a multi-stage 
compressor design is maximization of the overall 
isentropic efficiency. However, single objective 
optimization of the efficiency results in a drop in the 
total pressure ratio19. Therefore, multiobjective 
optimization is formulated in the present study where 
the objectives of the present design are maximization of 
the overall isentropic efficiency and the total pressure 
ratio.  

The radial distributions of total pressure and 
solidities at rotor trailing edges and flow angles and 
solidities at stator trailing edges are chosen as design 
variables to be optimized because they have a direct 
impact on the overall efficiency as well as the total 
pressure ratio. These radial distributions are expressed 
by using a cubic-spline interpolation scheme where 
each curve is defined by five control points at specified 
radial stations. These control points are taken as design 
parameters. As a result, the design problem has 80 
design parameters (eight blades times two radial 
distributions times five control points). The search 
range of each parameter is set to 10% of the baseline 
design. A constraint is applied to diffusion factor of 
each rotor and stator to be smaller than 0.55 to avoid 
obtaining designs with flow separations. 

±

Figure 11 shows the overall isentropic efficiency and 
the total pressure ratio of the non dominated designs 
and the baseline design. The present MOEA (indicated 
as MOEA(p300g1000), which means the population 
size 300 and the generation 1000) found reasonable non 
dominated designs including a design that improved the 
isentropic efficiency by over 1% (from 0.866 to 0.876) 
while maintaining the total pressure ratio and a design 
that improved the total pressure ratio by more than 9% 
(from 5.19 to 5.66)  while maintaining the efficiency. 
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Fig. 9 Approximate Pareto front for three objective design optimization for
cascade airfoil shapes; overview in the three dimensional objective function
space and two dimensional projections. Arrows indicate the desired direction in
each projection. The projections demonstrate convex and concave Pareto
fronts.  
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Fig. 10 Four-stage axial compressor baseline design 
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Fig. 11 Comparison of non dominated solutions 
obtained from various approaches  

 
For the comparison purpose, the standard 

gradient-based method20 has been applied by using the 
several weights for the utility function. Although it was 
able to find a few non dominated solutions, it generally 
produced solutions dominated by MOEA results. This 
implies that the objective function space is multi-modal, 
although the Pareto front is convex. Therefore, even for 
finding simple tradeoffs, EAs provide more reliable 
approaches. 

Finally, because the gradient-based method can find 
some of non dominated solutions efficiently, the 
solutions obtained from the gradient-based method 
were seeded into the initial population for MOEA. The 
corresponding results are indicated as 
GBM+MOEA(p200g300). The resulting non 
dominated solutions cover a wider front, especially for 
extreme regions even with a smaller number of the 
population size as well as with a smaller number of 
generations.  This type of hybridization for MOEA 
seems very promising. 
 

CONCLUSIONS 
 
The objective of the present study is to demonstrate 
performances of EAs and conventional gradient-based 
methods for finding Pareto fronts and to confirm the 
uniqueness of MOEA for MOP. The multiobjective 
optimization algorithms are applied to analytical test 
problems as well as to the real-world problem of a 

compressor design. 
In the analytical test problems, EAs and 

gradient-based methods have been considered to find 
convex, concave and discontinuous Pareto fronts. The 
comparison results clearly indicate the superiority of 
EAs in finding convex and discontinuous fronts. 

In the real-world problems, an example of the 
concave front has been presented through cascade 
airfoil design based on the Navier-Stokes equations. 
This supports the need of MOEA in the real-world 
applications. 

Finally, a multiobjective optimization of a four-stage 
compressor design for maximization of the overall 
isentropic efficiency and the total pressure ratio has 
been examined. MOEA obtained numbers of 
reasonable and uniformly distributed Pareto-optimal 
designs that include designs outperforming the baseline 
design in both objectives. On the other hand, the 
gradient-based search only found a few non dominated 
solutions. Even for the simple convex Pareto front, 
MOEA has been proven to be more reliable. Because 
the gradient-based method is very efficient, its results 
may be seeded in the initial population for MOEA. This 
type of hybridization is found very promising to make 
MOEA efficient.  
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