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Abstract. Self-Organizing Maps (SOMs) have been used to visualize tradeoffs 
of Pareto solutions in the objective function space for engineering design 
obtained by Evolutionary Computation. Furthermore, based on the codebook 
vectors of cluster-averaged values of respective design variables obtained from 
the SOM, the design variable space is mapped onto another SOM. The resulting 
SOM generates clusters of design variables, which indicate roles of the design 
variables for design improvements and tradeoffs. These processes can be 
considered as data mining of the engineering design. Data mining examples are 
given for supersonic wing design and supersonic wing-fuselage design. 

1   Introduction 

Multiobjective Evolutionary Algorithms (MOEAs) are getting popular in many fields 
because they will provide a unique opportunity to address global tradeoffs between 
multiple objectives by sampling a number of non-dominated solutions. To understand 
tradeoffs, visualization is essential. Although it is trivial to understand tradeoffs 
between two objectives, tradeoff analysis in more than three dimensions is not trivial 
as shown in Fig. 1. To visualize higher dimensions, Self-Organizing Map (SOM) by 
Kohonen [1,2] is employed in this paper.  

SOM is one of neural network models. SOM algorithm is based on unsupervised, 
competitive learning. It provides a topology preserving mapping from the high 
dimensional space to map units. Map units, or neurons, usually form a two-
dimensional lattice and thus SOM is a mapping from the high dimensions onto the 
two dimensions. The topology preserving mapping means that nearby points in the 
input space are mapped to nearby units in SOM. SOM can thus serve as a cluster 
analyzing tool for high-dimensional data. The cluster analysis of the objective 
function values will help to identify design tradeoffs.  

Design is a process to find a point in the design variable space that matches with 
the given point in the objective function space. This is, however, very difficult. For 
example, the design variable spaces considered here have 72 and 131 dimensions, 
respectively. One way of overcoming high dimensionality is to group some of design 
variables together. To do so, the cluster analysis based on SOM can be applied again. 

Based on the codebook vectors of cluster-averaged values of respective design 
variables obtained from the SOM, the design variable space can be mapped onto 



 

another SOM. The resulting SOM generates clusters of design variables. Design 
variables in such a cluster behave similar to each other and thus a typical design 
variable in the cluster indicates the behaviour/role of the cluster. A designer may 
extract design information from this cluster analysis. These processes can be 
considered as data mining for the engineering design.  

At first, SOM is applied to map objective function values of non-dominated 
solutions in four dimensions. This will reveal global tradeoffs between four design 
objectives. The multipoint aerodynamic optimization of a wing shape for SST at both 
supersonic and transonic cruise conditions has been performed by using MOEAs 
previously [3]. Both aerodynamic drags were to be minimized under lift constraints, 
and the bending and pitching moments of the wing were also minimized instead of 
imposing constraints on structure and stability. A high fidelity Computational Fluid 
Dynamics (CFD) code, a Navier-Stokes code, was used to evaluate the wing 
performance at both conditions. In this design optimization, planform shapes, camber, 
thickness distributions and twist distributions were parameterized in total of 72 design 
variables. To alleviate the required computational time, parallel computing was 
performed for function evaluations. The resulting 766 non-dominated solutions are 
analyzed to reveal tradeoffs in this paper. The resulting SOM is also used to create a 
new SOM of the cluster-averaged design variables. 

Second, SOM is applied to map entire solutions evaluated during the evolution of 
two-objective optimization. Based on the wing design system mentioned above, an 
aerodynamic optimization system for SST wing-body configuration was developed in 
[4]. To satisfy severe tradeoff between high aerodynamic performance and low sonic 
boom, the present objectives were to reduce CD at a fixed CL as well as to satisfy the 
equivalent area distribution for low boom design proposed by Darden [5]. Wing shape 
and fuselage configuration were defined in total of 131 design variables. The SOM of 
the objective function values indicates the non-dominated front as edges of the map 
and the SOM of the cluster-averaged design variables reveals the role of the design 
variables for design tradeoffs. 
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Fig. 1. Visualization of Pareto front 



 

2   Evolutionary Multiobjective Optimization 

2.1   MOGAs 

The genetic operators used here are based on MOGAs [6,7]. Selection is based on the 
Pareto ranking method and fitness sharing. Each individual is assigned to its rank 
according to the number of individuals that dominate it. A fitness sharing function is 
used to maintain the diversity of the population. To find non-dominated solutions 
more effectively, the so-called best-N selection is employed.  

For real function optimizations like the present research, however, it is more 
straightforward to use real numbers for encoding. Thus, the floating-point 
representation is used here. Accordingly, blended crossover (BLX-α) [8] is adopted at 
the crossover rate of 100%. This operator generates children on a segment defined by 
two parents and a user specified parameter α. The disturbance is added to new design 
variables within 10% of the given range of each design variable at a mutation rate of 
20%. Crossover and mutation rates are kept high because the best-N selection gives a 
very strong elitism. Details for the present MOGA were given in Refs. 3, 4 and 7. 

2.2   CFD Evaluation 

To evaluate the design, a high fidelity Euler/Navier-Stokes code was used. Taking 
advantage of the characteristic of GAs, the present optimization is parallelized on SGI 
ORIGIN2000 at the Institute of Fluid Science, Tohoku University. The system has 
640 Processing Elements (PE’s) with peak performance of 384 GFLOPS and 640 GB 
of memory.  

A simple master-slave strategy was employed: The master PE manages the 
optimization process, while the slave PE’s compute the Navier-Stokes code. The 
parallelization became almost 100% because almost all the CPU time was dominated 
by CFD computations. The population size used in this study was set to 64 so that the 
process was parallelized with 32-128 PE’s depending on the availability of job 
classes. The present optimization requires about six hours per generation for the 
supersonic wing case when parallelized on 128 PE’s. 

2.3   Neural Network and SOM 

SOM [1,2] is a two-dimensional array of neurons:  
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One neuron is a vector called the codebook vector:  
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This has the same dimension as the input vectors (n-dimensional). The neurons are 
connected to adjacent neurons by a neighbourhood relation. This dictates the 
topology, or the structure, of the map. Usually, the neurons are connected to each 
other via rectangular or hexagonal topology. One can also define a distance between 
the map units according to their topology relations.  

The training consists of drawing sample vectors from the input data set and 
“teaching” them to SOM. The teaching consists of choosing a winner unit by means 
of a similarity measure and updating the values of codebook vectors in the 
neighbourhood of the winner unit. This process is repeated a number of times.  

In one training step, one sample vector is drawn randomly from the input data set. 
This vector is fed to all units in the network and a similarity measure is calculated 
between the input data sample and all the codebook vectors. The best-matching unit is 
chosen to be the codebook vector with greatest similarity with the input sample. The 
similarity is usually defined by means of a distance measure. For example in the case 
of Euclidean distance the best-matching unit is the closest neuron to the sample in the 
input space.  

The best-matching unit, usually noted as mc, is the codebook vector that matches a 
given input vector x best. It is defined formally as the neuron for which  
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After finding the best-matching unit, units in SOM are updated. During the update 
procedure, the best-matching unit is updated to be a little closer to the sample vector 
in the input space. The topological neighbours of the best-matching unit are also 
similarly updated. This update procedure stretches the best-matching unit and its 
topological neighbours towards the sample vector. The neighbourhood function 
should be a decreasing function of time. In the following, SOMs were generated in 
the hexagonal topology by using Viscovery® SOMine 4.0 Plus [9]. 

2.4   Cluster Analysis 

Once SOM projects input space on a low-dimensional regular grid, the map can be 
utilized to visualize and explore properties of the data. When the number of SOM 
units is large, to facilitate quantitative analysis of the map and the data, similar units 
need to be grouped, i.e., clustered. The two-stage procedure --- first using SOM to 
produce the prototypes which are then clustered in the second stage --- was reported 
to perform well when compared to direct clustering of the data [10].  

Hierarchical agglomerative algorithm is used for clustering here. The algorithm 
starts with a clustering where each node by itself forms a cluster. In each step of the 
algorithm two clusters are merged: those with minimal distance according to a special 
distance measure, the SOM-Ward distance [9]. This measure takes into account 
whether two clusters are adjacent in the map. This means that the process of merging 
clusters is restricted to topologically neighbored clusters. The number of clusters will 
be different according to the hierarchical sequence of clustering. A relatively small 
number will be chosen for visualization (§3.2), while a large number will be used for 
generation of codebook vectors for respective design variables (§3.3). 



 

3   Four-Objective Optimization for Supersonic Wing Design 

3.1   Formulation of Optimization 

Four objective functions used here are 
1. Drag coefficient at transonic cruise, CD,t 
2. Drag coefficient at supersonic cruise, CD,s 
3. Bending moment at the wing root at supersonic cruise condition, MB 
4. Pitching moment at supersonic cruise condition, MP 

In the present optimization, these objective functions are to be minimized. The 
transonic drag minimization corresponds to the cruise over land; the supersonic drag 
minimization corresponds to the cruise over sea. Lower bending moments allow less 
structural weight to support the wing. Lower pitching moments mean less trim drag.  

The present optimization is performed at two design points for the transonic and 
supersonic cruises. Corresponding flow conditions and the target lift coefficients are 
described as 

1. Transonic cruising Mach number, M∞,t = 0.9 
2. Supersonic cruising Mach number, M∞,s = 2.0 
3. Target lift coefficient at transonic cruising condition, CL,t = 0.15 
4. Target lift coefficient at supersonic cruising condition, CL,s = 0.10 
5. Reynolds number based on the root chord length at both conditions, Re=1.0 x 107 

Flight altitude is assumed at 10 km for the transonic cruise and at 15 km for the 
supersonic cruise. To maintain lift constraints, the angle of attack is computed for 
each configuration by using CLα obtained from the finite difference. Thus, three 
Navier-Stokes computations per evaluation are required. During the aerodynamic 
optimization, wing area is frozen at a constant value. 

Design variables are categorized to planform, airfoil shapes and the wing twist. 
Planform shape is defined by six design variables, allowing one kink in the spanwise 
direction. Airfoil shapes are composed of its thickness distribution and camber line. 
The thickness distribution is represented by a Bézier curve defined by nine polygons. 
The wing thickness is constrained for structural strength. The thickness distributions 
are defined at the wing root, kink and tip, and then linearly interpolated in the 
spanwise direction. The camber surfaces composed of the airfoil camber lines are 
defined at the inboard and outboard of the wing separately. Each surface is 
represented by the Bézier surface defined by four polygons in the chordwise direction 
and three in the spanwise direction. Finally, the wing twist is represented by a B-
spline curve with six polygons. In total, 72 design variables are used to define a whole 
wing shape. A three-dimensional wing with computational structured grid and the 
corresponding CFD result are shown in Figs. 2 and 3.  See Ref. 3 for more details for 
geometry definition and CFD information. 

 



 

 
Fig. 2. Wing grid in C-H topology Fig. 3. Pressure contours on the upper surface 

of a wing computed by the CFD code 

3.2   Visualization of Design Tradeoffs: SOM of Tradeoffs 

The evolution was computed for 75 generations until all individuals become non-
dominated. An archive of non-dominated solutions was also created along the 
evolution. After the computation, the 766 non-dominated solutions were obtained in 
the archive as a three-dimensional surface in the four-dimensional objective function 
space. By examining the extreme non-dominated solutions, the archive was found to 
represent the Pareto front qualitatively. 

The present non-dominated solutions of supersonic wing designs have four design 
objectives. First, let’s project the resulting non-dominated front onto the two-
dimensional map. Figure 4 shows the resulting SOM with seven clusters. For better 
understanding, the typical planform shapes of wings are also plotted in the figure. 
Lower right corner of the map corresponds to highly swept, high aspect ratio wings 
good for supersonic aerodynamics. Lower left corner corresponds to moderate sweep 
angles good for reducing the pitching moment. Upper right corner corresponds to 
small aspect ratios good for reducing the bending moment. Upper left corner thus 
reduces both pitching and bending moments.  

Figure 5 shows the same SOM contoured by four design objective values. All the 
objective function values are scaled between 0 and 1. Low supersonic drag region 
corresponds to high pitching moment region. This is primarily because of high sweep 
angles. Low supersonic drag region also corresponds to high bending moment region 
because of high aspect ratios. Combination of high sweep angle and high aspect ratio 
confirm that supersonic wing design is highly constrained. 



 

 
 

Fig. 4. SOM of the objective function values and typical wing planform shapes 
 

CDt

0.02 0.15 0.29 0.42 0.55 0.68 0.81 0.95

CDs

0.04 0.17 0.31 0.44 0.57 0.70 0.83 0.96

Mb

0.03 0.17 0.30 0.43 0.57 0.70 0.83 0.97

Mp

0.01 0.15 0.28 0.42 0.56 0.69 0.83 0.97  
Fig. 5. SOM contoured by each design objective 

3.3   Data Mining of Design Space: SOM of Design Variables 

The previous SOM provides clusters based on the similarity in the objective function 
values. The next step is to find similarity in the design variables that corresponds to 
the previous clusters. To visualize this, the previous SOM is first revised by using 
larger number of clusters of 49 as shown in Fig. 6. Then, all the design variables are 



 

averaged in each cluster, respectively. Now each design variable has a codebook 
vector of 49 cluster-averaged values. This codebook vector may be regarded to 
represent focal areas in the design variable space. Finally, a new SOM is generated 
from these codebook vectors as shown in Fig. 7. 

This process can be done for encoded design variables (genotype) and decoded 
design variables (phenotype). In the earlier study, the genotype was used for SOM. 
However, the genotype and phenotype generated completely different SOMs. A 
possible reason is because the various scaling appears in phenotype, for example, one 
design variable is between 0 and 1 and another is between 35 to 70. The difference of 
order of magnitude in design variables may lead to different clusters. To avoid such 
confusion, the genotype is used for SOM here. 

In Fig. 7, the labels indicate 72 design variables. DVs 00 to 05 correspond to the 
planform design variables. These variables have dominant influence on the wing 
performance. DVs 00 and 01 determine the span lengths of the inboard and outboard 
wing panels, respectively. DVs 02 and 03 correspond to leading-edge sweep angles. 
DVs 04 and 05 are root-side chord lengths. DVs 06 to 25 define wing camber. DVs 
26 to 32 determine wing twist. Figure 7 contains seven clusters and thus seven design 
variables are chosen from each cluster as indicated. Figure 8 shows SOM’s of Fig. 4 
contoured by these design variables. 

The sweep angles, DVs 02 and 03, make a cluster in the lower left corner of the 
map in Fig. 7 and the corresponding plots in Fig. 8 confirm that the wing sweep has a 
large impact on the aerodynamic performance. DVs 11 and 51 in Fig. 8 do not appear 
influential to any particular objective. By comparing Figs. 8 and 5, DV 01 has similar 
distribution with the bending moment Mb, indicating that the wing outboard span has 
an impact on the wing bending moment. On the other hand, DV 00, the wing inboard 
span, has an impact on the pitching moment. DV 28 is related to transonic drag. DV 
04 and 05 are in the same cluster. Both of them have an impact on the transonic drag 
because their reduction means the increase of aspect ratio. Several features of the 
wing planform design variables and the corresponding clusters are found out in the 
SOMs and they are consistent with the existing aerodynamic knowledge. 

 

 
Fig. 6. SOM of objective function values with 49 clusters 
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Fig. 7. SOM of cluster-averaged design variables 
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Fig. 8. SOM contoured by design variables selected from clusters in Fig. 7 



 

4   Two-Objective Optimization for Supersonic Wing-Fuselage 
Design 

4.1   Formulation of Optimization 

In this study, SST wing-body configurations are designed to improve the aerodynamic 
performance and to lower the sonic boom strength. Therefore, design objectives are to 
reduce CD at Mach number 2.0 at a fixed CL (=0.10) and to match Darden’s equivalent 
area distribution that can achieve low sonic boom. Multiblock Euler calculation was 
used to evaluate aerodynamic performance [11]. For the evaluation of sonic boom 
strength, an equivalent area distribution is matched to Darden’s equivalent area 
distribution for 300 ft fuselage SST at Mach number 1.6 at CL = 0.125. 

To evaluate aerodynamic performances, aerodynamic evaluation has to be 
automatically performed for a given SST wing-body configuration. The wing 
definition was almost same as the previous wing optimization. Then, 55 additional 
design variables were used to define nonsymmetric fuselage configuration. Four more 
design variables represented the wing lofting. The total number of design variables is 
131. 

As body length and wing area is fixed to 300 ft and 9,000 ft2, respectively, body 
volume, minimum diameter of body and wing volume must be greater than values 
given in Table 1. The other constraints are implemented to design variables as 
boundaries. As a result, the present SST wing-body design problem has two objective 
functions of minimization, three constraints and 131 design variables, and is 
optimized by real-coded MOGAs. Master-slave type parallelization was again 
performed to reduce the large computational time of each CFD evaluation in the 
optimization process. Figures 9 and 10 show typical computational grid and 
corresponding CFD result, respectively. See Ref. 4 for more details for geometry 
definition and CFD information. 

 

Table 1. Constraints of SST wing-body configuration 

 
Body volume ≥ 30,000 ft3

Minimum diameter ≥ 11.8 ft (0.23≤x/L≤0.70) 
Wing volume ≥ 16,800 ft3
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Fig. 9. Surface grid for SST wing-
fuselage configuration (numbers indicate 
corresponding multiblock grids) 

Fig. 10. Computed pressure distribution 
on the upper surface of SST wing- 
fuselage configuration 

4.2   Visualization of Design Tradeoffs: SOM of Function Landscape 

First, all the solutions obtained during the present evolutionary computation were 
mapped onto SOM according to the scaled objective function values. The resulting 
SOM is shown in Fig. 11. Several non-dominated solutions are indicated by * in the 
figure. The map consists of eight clusters. The lower left cluster contains the extreme 
non-dominated solution of the minimum drag. The upper right cluster contains the 
extreme non-dominated solution of the minimum boom. The corresponding objective 
functions values are then plotted in Fig. 12. Because only two objectives are used 
here, the map coordinates approximately matches to the objectives. The vertical 
direction corresponds to the drag and the horizontal axis corresponds to the sonic 
boom. The lower edge and the right edge of the map indicate the non-dominated 
front. Although the mapping is not essential to visualize tradeoffs here, the cluster 
analysis may be used to generate clusters of design variables. 

 

 
Fig. 11. SOM of the objective function values 



 

 

DRAG BOOM

Fig. 12. SOM coloured by each design objective 

4.3   Data mining of Design Space: SOM of Design Variables 

To generate SOM of the design variables, Fig. 11 was divided into 50 clusters as Fig. 
13. Then, Fig. 14 was generated from codebook vectors of cluster-averaged design 
variables in Fig. 13. Figure 14 shows SOM of the design variables in five clusters. In 
Fig. 14, the labels indicate 131 design variables. Figure 14 can be interpreted from the 
behaviors of the design variables representing the corresponding clusters. Figure 15 
shows the map of Fig. 11 contoured by the five design variables indicated in Fig. 14. 
A trend of the design variables in the left cluster of Fig. 14 is represented by DV 123 
in Fig. 15. Its distribution appears the inverse of the sonic boom in Fig. 12. DV 123 
determines the twist angle at the wing tip. It has an impact on the list distribution, 
leading to influences on the equivalent cross sectional distribution and thus on the 
sonic boom strength. The center cluster in Fig. 14 is represented by DV 2 and its 
distribution in Fig. 15 appears the inverse of the drag in Fig. 12. DV 2 is one of the 
design variables that define the sharpness of the nose of the fuselage. Blunt nose is 
known to increase drag for supersonic aircraft. The right cluster in Fig. 14 is 
represented by DV 28 and the corresponding distribution in Fig. 15 has a local 
minimum in the middle of the left, upper edge of the map. This is one of the design 
variables that determine the body radius distribution at the side of the fuselage, but it 
does not seem primarily related to either objective here. DV’s 89 and 91 have 
opposite trends, but they are not influential to the non-dominated front, either. 
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Fig. 13. SOM of objective function values with 50 clusters 
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Fig. 14. SOM of cluster-averaged design variables 
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Fig. 15. SOM contoured by design variables selected from clusters in Fig. 14 

5   Concluding Remarks 

Design tradeoffs have been investigated for two multiobjective aerodynamic design 
problems of supersonic transport by using visualization and cluster analysis of the 
non-dominated solutions based on SOMs. The first optimization is to design 



 

supersonic wings defined by 72 design variables with four objectives to be 
minimized. The second optimization is to design supersonic wing-body 
configurations represented by in total 131 design variables with drag and boom 
minimization. Design data were gathered by MOGAs.  

SOM is first applied to visualize tradeoffs between design objectives. In the first 
design case, four objective functions were employed and 766 non-dominated 
solutions were obtained. Three-dimensional non-dominated front in the objective 
function space has been mapped onto the two-dimensional SOM where global 
tradeoffs are successfully visualized. In the second design case, entire solutions 
during the evolution have been mapped onto SOM to visualize function landscape, 
and the non-dominated front was found at the edges of the map. The resulting SOMs 
are further contoured by each objective, which provides better insights into design 
tradeoffs. 

Furthermore, based on the codebook vectors of cluster-averaged values for 
respective design variables obtained from the SOMs, the design variable space is 
mapped onto another SOM. Design variables in the same cluster are considered to 
have similar influences in design tradeoffs. Therefore, by selecting a member (design 
variable) from a cluster, the original SOM in the objective function space is contoured 
by the particular design variable. It reveals correlation of the cluster of design 
variables with objective functions and their relative importance. Because each cluster 
of design variables can be identified influential or not to a particular design objective, 
the optimization problem may be divided into subproblems where the optimization 
will be easier to lead to better solutions.      

These processes may be considered as data mining of the engineering design. The 
present work demonstrates that MOGAs and SOMs are versatile design tools for 
engineering design.  
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