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Abstract 

The design optimization of wings for supersonic 
transport by means of Multiobjective Evolutionary 
Algorithms is presented. Three objective functions 
are first considered to minimize the drag for 
transonic cruise, the drag for supersonic cruise and 
the bending moment at the wing root at the 
supersonic condition. The wing shape is defined by 
planform, thickness distributions and warp shapes in 
total of 66 design variables. A Navier-Stokes code is 
used to evaluate the aerodynamic performance at 
both cruise conditions. Based on the results, the 
optimization problem is further revised. The 
definition of the thickness distributions is given more 
precisely by adding control points. In total 72 design 
variables are used. The fourth objective function to 
minimize the pitching moment is added. The results 
of the revised optimization are compared with the 
three-objective optimization results as well as NAL’s 
design. Two Pareto solutions are found superior to 
NAL’s design for all four objective functions. The 
planform shapes of those solutions are “Arrow wing” 
type. 

1. Introduction 

To develop a new Supersonic Transport (SST), 
many researches have been performed. Especially in 
Japan, National Aerospace Laboratory (NAL) is 
conducting the scaled supersonic experimental 
airplane project.1 

For a new SST design, there exist many technical 
difficulties to be overcome. L/D must be improved, 
and the sonic boom should be prevented. However, 
there is a severe tradeoff between reducing the drag 
and boom. As a result, a new SST is expected to 
cruise at a supersonic speed only over the sea and to 
cruise at a transonic speed over the land. This means 
the important design objectives are not only to 
improve a supersonic cruise performance but also to 
improve a transonic one. For example, a large sweep 
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angle can reduce the wave drag, but it limits the 
low-speed aerodynamic performance. Therefore, 
there are many tradeoffs to be addressed in designing 
a SST. 

To identify such tradeoffs efficiency, the 
multiobjective (MO) optimization must be performed. 
MO optimization seeks to optimize the components 
of a vector-valued objective function unlike the 
single objective optimization. Pareto solutions, which 
are members of the Pareto-optimal set obtained by 
solving MO problems, represent tradeoffs among 
multiple objectives. Since an application of 
Evolutionary Algorithms (EAs) to MO problem has 
many advantages, such methods have been 
increasingly used in aerodynamic optimization 
problems.2-4 Multiobjective Genetic Algorithms 
(MOGAs) can sample multiple Pareto solutions 
efficiency and effectively. Since GAs seek optimal 
solutions in parallel using a population of design 
candidates, MOGAs can identify multiple Pareto 
solutions at the same time without specifying weights 
between objectives. Objective functions can be 
evaluated by the existing CFD solver without any 
modification.  

This paper presents the multipoint aerodynamic 
optimization of a wing shape for SST at both 
supersonic and transonic cruise conditions by 
MOGAs. Both aerodynamic drags will be minimized 
under lift constraints, and the bending moment at the 
wing root will also be minimized to prevent all the 
Pareto solutions having impractically large aspect 
ratios. A Navier-Stokes solver is used to evaluate the 
wing performance at both conditions. In the present 
design optimization, planform shapes, camber, 
thickness distributions and twist distributions are 
parameterized. The resulting Pareto solutions are 
analyzed and compared with NAL's design and the 
previous inviscid optimization results.3 As a result, a 
few problems are revealed in the problem definition. 

The revised multiobjective optimization is then 
performed to obtain more realistic wing designs. In 
the revised optimization, the minimization of a 
pitching moment is added as the fourth objective 
function to reduce the pitching moment associated 
with a highly swept wing. The definition of the 
thickness distributions is also improved, because the 
previous definition, which appears quite suitable for 
inviscid optimization, has a problem with viscous 
flows. To improve the solutions quality further, 
Adaptive Range Multiobjective Genetic Algorithms 
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(ARMOGAs) are applied. Final Pareto solutions will 
be examined in detail. 

In this study, a Navier-Stokes solver is used to 
evaluate the objective functions for optimization 
process. To evolve a population of design candidates, 
the enormous calculation time is required. However, 
all the solutions show tradeoffs in contrast to the 
single optimization where the solution is merely a 
point in the design space. Therefore, detailed tradeoff 
study can be performed. To alleviate the required 
computational time, parallel computing is performed. 

2. Evolutionary Multiobjective Optimization 

EAs, in particular GAs, are based on the theory of 
evolution, where a biological population evolves 
over generations to adapt to an environment by 
selection, crossover and mutation. In design 
optimization problems, fitness, individual and genes 
correspond to an objective function, design candidate 
and design variables, respectively.  

2.1 Multiobjective GAs (MOGAs) 

GAs search from multiple points in the design 
space simultaneously and stochastically, instead of 
moving from a single point deterministically like 
gradient-based methods. This feature prevents design 
candidates from settling in local optimum. Moreover, 
GAs do not require computing gradients of the 
objective function. These characteristics lead to 
following three advantages of GAs: 1, GAs have 
capability of finding global optimal solutions. 2, GAs 
can be processed in parallel. 3, High fidelity CFD 
codes can easily be adapted to GAs without any 
modification. 

GAs have been extended to solve MO problems 
successfully.5 GAs use a population to seek optimal 
solutions in parallel. This feature can be extended to 
seek Pareto solutions in parallel without specifying 
weights between the objective functions. The 
resultant Pareto solutions represent global tradeoffs. 
Therefore, MOGAs are quite unique and attractive 
methods to solve MO problems. 

Figure 1 shows the flowchart of MOGAs used in 
the present study. The following describes genetic 
operators employed here in brief. Traditionally, GAs 
use binary representation of design variables. For real 
function optimizations like the present aerodynamic 
optimization, however, it is more straightforward to 
use real numbers. Thus, the floating-point 
representation is used here. Selection is based on the 
Pareto ranking method and fitness sharing.5 Each 
individual is assigned to its rank according to the 
number of individuals that dominate it. A standard 
fitness sharing function is used to maintain the 
diversity of the population. To find the Pareto 
solutions more effectively, the so-called best-N 
selection6 is also coupled with. Blended crossover 
(BLX-α)7 described below is adopted. This operator 
generates children on a segment defined by two 

parents and a user specified parameter α. The 
disturbance is added to new design variables at a 
mutation rate of 20%. If the mutation occurs, new 
design variables are obtained as 

Child1 = γ⋅Parent1 + (1-γ)⋅Parent2 + m⋅(ran2-0.5) 
Child2 = (1-γ)⋅Parent1 + γ⋅Parent2 + m⋅(ran3-0.5) 
γ = (1 + 2α)⋅ran1 - α                                               (1) 

where Child1,2 and Parent1,2 denote encoded design 
variables of the children (members of the new 
population) and parents (a mated pair of the old 
generation), respectively. The random numbers 
ran1-3 are uniform random number in [0,1] and m is 
set to 10% of the given range of each design variable. 
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Initial population 

Crossover 

Mutation 

 
Fig. 1. Flowchart of MOGAs 

2.2 Adaptive Range MOGAs (ARMOGAs) 

To reduce the large computational burden for CFD 
evaluation, the reduction of the total number of 
evaluations is desired. On the other hand, a large 
search space is essential for real parameter problems. 
Adaptive Range GAs (ARGAs) originally proposed 
by Arakawa and Hagiwara are quite unique and 
effective for solving such problems.8 Oyama 
developed real-coded ARGAs and applied them to 
the transonic wing optimization.9 In this study, 
ARGAs are extended to solve MO problems. 

The main difference between ARGAs and 
conventional GAs is the introduction of the range 
adaptation based on the population statistics. The 
flowchart of ARGAs is shown in Fig. 2. Population 
candidates are reinitialized every M generations for 
the range adaptation so that the population focuses on 
promising regions. Encoding method is also revised 
by using normal distribution. The real value of i-th 
design variable pi is encoded to a real number ri 
defined in (0,1) so that ri is equal to the integrations 
of the normal distribution from –∞ to pni, 
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ri = ∫ ∞−

ipn 
N(0,1)(z)dz         (2) 

pni = ( pi − µi ) / σi          (3) 

where the average µi and the standard deviation σi of 
i-th design variable are calculated by sampling the 
top half of the previous population to promote the 
population toward search regions of high fitness. Due 
to the range adaptation, ARMOGAs are expected to 
search optimal solutions efficiently in the large 
design space. A schematic view of this encoding is 
illustrated in Fig. 3. 

In this study, ARGAs have to deal with multiple 
Pareto solutions for the MO optimization. The basis 
of ARMOGAs is the same as ARGAs, but a 
straightforward extension may damage the diversity 
of the population. To maintain the diversity of 
solution candidates, the normal distribution for 
encoding have to be revised by the introduction of a 
plateau as shown in Fig. 4. The search region is 
partitioned into three parts (i, ii, iii) and controlled by 
two parameters α and β where α determines the ratio 
of population in region (i) and β represents the width 
of the plateau. In the regions (i) and (iii), ARGAs’ 
encoding method is used. In contrast, the region (ii) 
adopts the conventional real-number encoding 
method. 
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Fig. 2. Flowchart of ARMOGAs 
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Fig. 3. Encoding based on normal distribution 
for ARGAs 
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1−α ≤ ri ≤ 1  

pi 
 

Fig. 4. Encoding with plateau for ARMOGAs 

2.3 CFD Evaluation 

To account for the viscous effect, the 
three-dimensional, compressible, thin-layer 
Navier-Stokes code is used to evaluate aerodynamic 
performances of three-dimensional wings at both 
transonic and supersonic conditions. This 
Navier-Stokes code employs total-variation- 
diminishing type upwind differencing and the 
lower-upper factored symmetric Gauss-Seidel 
scheme.10 An algebraic mixing length turbulence 
model by Baldwin and Lomax is adopted.11 To 
accelerate the convergence, the multigrid method is 
also used.12 

Taking advantage of the characteristic of GAs, the 
present optimization is parallelized on SGI 
ORIGIN2000 at the Institute of Fluid Science, 
Tohoku University. The system has 640 PE’s with 
peak performance of 384 GFLOPS and 640 GB of 
memory. The master PE manages the optimization 
process, while the slave PE’s compute the 
Navier-Stokes code. The population size used in this 
study was set to 64 so that the process was 
parallelized with 32-128 PE’s depending on the 
availability. It should be noted that the parallelization 
was almost 100% because almost all the CPU time 
was dominated by Navier-Stokes computations. The 
present optimization requires about six hours per 
each generation when parallelized on 128 PE’s. 

 

3. Multiobjective Aerodynamic Optimization 

3.1 Formulation of Three-Objective 
 Optimization 

The objective functions used here can be stated as 
follows: 

1. Drag coefficient at transonic cruise, CD,t 
2. Drag coefficient at supersonic cruise, CD,s 
3. Bending moment at the wing root at supersonic 

cruise condition, MB 

In the present optimization, all three objective 
functions are to be minimized. The bending moment 
represents the lateral moment that acts at the wing 
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root as illustrated in Fig. 5 and it is calculated by 
directly integrating the computed pressure load at the 
supersonic condition. The present optimization is 
performed at two design points for the transonic and 
supersonic cruises. Each flow condition and the 
target lift coefficient are described as 

1. Transonic cruising Mach number, M∞,t = 0.9 
2. Supersonic cruising Mach number, M∞,s = 2.0 
3. Target lift coefficient at transonic cruising 

condition, CL,t = 0.15 
4. Target lift coefficient at supersonic cruising 

condition, CL,s = 0.10 
5. Reynolds number based on the root chord length 

at both conditions, Re = 1.0x107 

Flight altitude is assumed at 10km for the transonic 
cruise and at 15km for the supersonic cruise. To 
maintain lift constraints, the angle of attack is 
computed for each configuration by using CLα 
obtained from the finite difference. Thus, three 
Navier-Stokes computations per evaluation are 
required. During the aerodynamic optimization, wing 
area is frozen at a constant value. 

Design variables are categorized to planform, 
airfoil shapes and the wing twist. The wing planform 
is determined by six design variables as shown in Fig. 
5 and constraints for the planform are summarized in 
Table 1. A chord length at the wing tip is determined 
accordingly because of the fixed wing area. Airfoil 
shapes are composed of its thickness distribution and 
camber line. The thickness distribution is represented 
by a Bézier curve defined by nine polygons as shown 
in Fig. 6.13 The wing thickness is constrained for 
structural strength as described in Table 1. The 
thickness distributions are defined at the wing root, 
kink and tip, and then linearly interpolated in the 
spanwise direction. The total number of polygons is 
27 for the entire thickness distribution.  

The camber surfaces composed of the airfoil 
camber lines are defined at the inboard and outboard 
of the wing separately. Each surface is represented by 
the Bézier surface defined by four polygons in the 
chordwise direction and three in the spanwise 
direction. For instance, Figure 7 shows the camber 
line with its control points at the root. It is concave 
only at the root and it becomes convex at the other 
spanwise locations similar to the warp design based 
on the linearized theory. The number of polygons that 
defines two camber surfaces is 20 in total. Finally, 
the wing twist is represented by a B-spline curve 
with six polygons as shown in Fig. 8. As a result, 66 
design variables are used to define a whole wing 
shape. In Fig. 9, a three-dimensional wing with 
computational structured grid is illustrated. 

MOGAs (Section 2-1) are used to seek the Pareto 
solutons of this three-objective optimization. In this 
study, the population is set to 64 and the parameter α, 
which is used in the selection process, is set to 0.5 
except for the planform definition design variables. 

In the case of the six planform design variables, α is 
set to 0.0 to prevent possible divergence of 
computation for the new configuration. 

 
 

Table 1. Summary of constraints 

(a) Constraints for planform shape 

Chord length at root 10 < Croot < 20 
Chord length at kink 3 < Ckink < 15 
Inboard span length 2 < bin < 7 
Outboard span length 2 < bout < 7 
Inboard sweep angle (deg) 35 < αroot < 70 
Outboard sweep angle (deg) 35 < αkink < 70 
Wing area S = 60 
Chord length at tip 1 < Ctip < 10 
Chord length Ctip < Ckink < Croot 
Span length bout < bin 
Sweep angle αkink < αroot 

(b) Constraints for thickness distribution 

Maximum thickness (%) 3 < ZP4 < 4 

Maximum thickness location (%) 15 < XP4 < 70 

Continuous first derivative at P4 ZP3 = ZP4 = ZP5 
Continuous first derivative 
at leading edge 

XP0 = XP1 

(c) Constraints for camber distribution 

Negative camber at wing root ZC01, ZC02 < 0 

Positive camber 
ZC21, ZC22, ZC31, 
ZC32, ZC41, ZC42 < 0 

(d) Constraints for twist distribution 

Twist angle at tip  3.5 < ZT1−ZT4 < 7.5 
Monotone decrease of twist 
angle 

ZT2 > ZT3 

Control point location (y) YT0 = −0.1, YT5 = 1.1 
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Fig. 5. Wing planform definition and schematic view 
of moment axes 
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Fig. 6. Wing thickness definition 
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Fig. 7. Wing camber surface definition 
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Fig. 8. Wing twist definition 
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Fig. 9. Wing with structured grid in C-H topology 

3.2 Overview of Resulting Pareto Solutions 
The evolution was computed for 30 generations. 

After that, all the solutions evaluated were sorted 
again to find the final Pareto front. As a result, the 
final Pareto solutions were obtained in the 
three-dimensional objective function space as shown 
in Fig. 10. The tradeoff surface with the objective 
functions is exhibited in the figure. Four typical 
planform shapes are also plotted for solutions at CD,t 
minimum, CD,s minimum, bending moment minimum 
and near the center of the front. The extreme Pareto 
solutions, three planform shapes that minimize the 
respective objective functions, appear physically 
reasonable.  

To present tradeoffs between the objectives more 
clearly, Pareto solutions are projected into the 
two-dimensional plane as shown in Figs. 11-13. 
Figures 11 and 12 present the tradeoffs between 
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transonic and supersonic drag coefficients. The 
solutions are labeled by the aspect ratio and the taper 
ratio in Figs. 11 and 12, respectively. In Fig. 11, 
wings with larger aspect ratios achieve lower drag 
coefficients as expected. Figure 12 shows that the 
wings with the taper ratios smaller than 0.4 have 
good aerodynamic performances, but further 
decrease of the taper ratio does not correspond to the 
reduction of cruising drag directly. On the other hand, 
the wings with the taper ratios larger than 0.4 have 
the lower bending moments and poor aerodynamic 
performances as shown in Fig. 13. 
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Fig. 10. Pareto front in the objective function space 
and typical planform shapes 
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3.3 Comparison with NAL’s Second Design 

NAL SST Design Team already finished the fourth 
aerodynamic design for the experimental supersonic 
airplane to be launched in 2002. To summarize their 
design concepts briefly, the first design determined 
the planform shapes among 99 candidates, and the 
second design was performed by the warp 
optimization based on the linearized theory. The third 
design aimed a natural-laminar-flow (NLF) wing by 
an inverse method using a Navier-Stokes code. 
Finally, the fourth design was performed for a 
wing-fuselage configuration.14 Because a fully 
developed turbulence is assumed in the present 
Navier-Stokes computations, it is improper to 
compare the present Pareto solutions to NAL’s NLF 
wing design. Therefore, NAL’s second design is 
chosen for a comparison. 

Table 2 summarizes comparisons of a Pareto 
solution (3V) with NAL’s second design. The 
aerodynamic calculation of NAL’s second design is 
performed here by using the same Navier-Stokes 
solver. The Pareto solution presented here are 
superior to NAL’s second design in all three 
objectives. Figure 14 shows the wing planforms of 
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the two, indicating a large difference of planform 
shapes between the present solutions and NAL’s 
design. (The inviscid result will be discussed in the 
next section.) The present planforms are similar to 
the “arrow wing” planform and the NAL’s planform 
is similar to the conventional “delta wing” planform. 

The thickness distributions of the two wings are 
shown in Fig. 15 as well as the previously obtained 
inviscid solution. The thickness distribution of NAL’s 
design is simply taken from an existing NLF airfoil. 
In contrast, the present optimization is performed 
under a fully turbulent flow with the thickness 
constraint. Therefore, the maximum thickness 
appears near the leading edge. Then, the thickness is 
reduced toward the trailing edge to prevent the rapid 
growth of the boundary layer. 
 

Table2. Aerodynamic performances between the 
selected Pareto solution (3V) and NAL’s second 

design 

 CD,t CD,s MB 
3V 0.01004036 0.01093742 18.21 

NAL2nd 0.01010175 0.01097646 18.23 
 

NAL2nd
Inviscid
Viscous (3V)

 
Fig. 14. Comparison of planform shapes of the 

viscous (3V) and inviscid designs with NAL’s design 
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Fig. 15. Comparison of thickness distributions at the 
wing root of the viscous (3V) and inviscid designs 

with NAL’s design 

3.4 Difference between viscous and inviscid 
calculations 

The present viscous designs (3V) are compared 
with the inviscid designs computed previously.3 By 
comparing the two optimization results, the 
difference of the wing shapes due to the viscous 
effect becomes clear. The Pareto solutions that are 
found to outperform NAL’s design in all three 

objectives at both cases are selected for the 
comparison.  

A comparison of the planform shapes is shown in 
Fig. 14. Both planform shapes are similar to the 
“arrow wing” planform, but the shapes are slightly 
different. The viscous design has a less sweep angle 
and a less taper ratio than the inviscid design. A 
highly swept wing tends to have a flow separation 
near the wing tip. The present viscous design appears 
better than the inviscid design to prevent the possible 
tip separation.  

Figure 15 shows a comparison of the thickness 
distributions at the root. It shows the quite different 
distributions. In the viscous case, the wing is thicker 
near the leading edge and thinner near the trailing 
edge. However, in the inviscid case, the wing is very 
thick. The Cp distributions shown in Fig. 16 explain 
their difference. In the inviscid case, the Cp 
distribution has a discontinuity at the trailing edge, 
and therefore it generates the lift even at the trailing 
edge. However, such a thick airfoil probably causes a 
flow separation. It is important to consider the 
viscous effect for designing thickness distributions. 
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Fig. 16. Comparison of Cp distributions at the wing 

root of the viscous (3V) and inviscid designs 
 

4. Revised Multiobjective Aerodynamic 
Optimization 

4.1 Formulation of Four-Objective 
 Optimization 

The three-objective optimization described in the 
previous section obtained good tradeoff surfaces and 
the Pareto solution that outperformed the NAL’s 
design in all three objectives. However the results 
also showed some problems. First, although “arrow 
wing” type planform is known to be good for 
supersonic aerodynamics, it is also known to have 
aeroelastic and control problems due to a large sweep 
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angle. A pitching moment of the wing should be 
monitored. Second, the design results contain 
discontinuities in the second derivative of the wing 
thickness distribution at the maximum thickness 
location as shown in Fig. 15. This leads to concerns 
of the designer for the possible boundary layer 
separation at off-design conditions. 

Therefore, the optimization problem is redefined 
in this section. To reduce the pitching moment and 
investigate its effect, the minimization of the pitching 
moment is added as the fourth objective function. 
The pitching moment is measured at the leading edge 
of the root. The overview of pitching axis is also 
illustrated in Fig. 5. In addition, since the previous 
thickness definition only enforces the continuity in 
the first derivative at the maximum thickness 
location (Table 1 and Fig. 6), not only the first 
derivative but also the second derivative is 
constrained here. Two polygons, which have the 
same distance from the maximum thickness position, 
are added to the original definition of the thickness as 
shown in Fig. 17. The constraints for the revised 
thickness definition are summarized in Table. 3. The 
total number of design variables becomes 72. 

Except for these two improvements, all the design 
conditions are the same as the first optimization case. 
The four objective functions to be minimized are 

1. Drag coefficient at transonic cruise, CD,t 
2. Drag coefficient at supersonic cruise, CD,s 
3. Bending moment at the wing root at supersonic 

cruise condition, MB 
4. Pitching moment at supersonic cruise condition, 

MP 

The present four-objective optimization is 
performed by ARMOGAs (Section 2-2). The 
standard genetic operators are the same as the 
previous. A population is also set to 64. The range 
adaptation is performed every 10 generations starting 
from the 15th generation. Two parameters α and β, 
which control the encoding method of ARMOGAs, 
are set to 0.4 and 1.0, respectively. 
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Table 3. Constraints for revised thickness definition 

Maximum thickness  3 < ZP5 < 4 
Maximum thickness location 15 < XP5 < 70 
Continuous first derivative at P5 ZP4 = ZP5 = ZP6 
Continuous second derivative 
at P5 

XP5–XP3 = XP7–XP5, 
ZP3 = ZP7 

Continuous first derivative 
at leading edge 

XP0 = XP1 

4.2 Overview of Pareto Solutions 

The evolution was computed for 75 generations. 
After the computation, all the solutions evolved were 
sorted again to find the final Pareto solutions. The 
Pareto solutions were obtained in the 
four-dimensional objective function space. To 
understand the distribution of Pareto solutions, all 
Pareto solutions are projected into the 
two-dimensional objective function space between 
transonic and supersonic drag coefficients as shown 
in Fig. 18. In Fig. 18, Surface I shows the tradeoff 
between aerodynamic performances. The wings near 
Surface I have impractically large aspect ratios. The 
planform shapes of the extreme Pareto solutions that 
minimize the respective objective functions appear 
physically reasonable as shown in Fig. 19. They are 
more extreme than those in Fig. 10. A wing with the 
minimal transonic cruising drag has a less 
leading-edge sweep and a large aspect ratio. On the 
contrary, a wing with the lowest supersonic drag 
coefficient has a large leading-edge sweep to remain 
inside the Mach cone. The pitching moment is 
reduced by lowering the sweep angle and the wing 
chord length. 

The results of the previous three-objective and the 
present four-objective optimization are compared 
here. The Pareto solutions obtained from both 
optimizations are plotted in Fig. 20. The present 
Pareto front is larger than three-objective’s one, in 
particular, better tradeoff solutions appear in the 
tradeoff surface I compared to the previous tradeoff 
Surface I’. The region II, there are no solutions in the 
three-objective optimization. It might be due to the 
introduction of the pitching moment minimization. 
To examine it, all the present Pareto solutions in Fig. 
18 are labeled by the bending and pitching moments, 
respectively, as shown in Fig. 21. The wings near the 
tradeoff surface between transonic and supersonic 
drag coefficients (tradeoff surface I in Fig. 18) have 
impractically large bending moments as shown in Fig. 
21 (a). The bending moment is closely related to both 
transonic and supersonic drag coefficients. On the 
other hand, the pitching moment has an influence 
only on supersonic drag coefficient. As a 
consequence, the region II in Fig. 20 was primarily 
corresponding the minimization of the bending 
moment, not to the new objective function of the 
pitching moment minimization. The planform shapes 
that have the lowest bending moment obtained from 
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the present and previous optimization are plotted in 
Fig. 22. Since these planform shapes are quite 
different, the present minimum wing and the wings 
belonged to the region II are found thanks to 
ARMOGAs. Similarly, the improvement of the 
present tradeoff surface I from the previous surface I’ 
is due to ARMOGAs (Fig. 20). 
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Fig. 22. Comparison of planform shapes having 

lowest bending moment obtained by the present and 
previous optimizations 

4.3 Comparison with NAL’s Second Design and 
the Three-Objective Optimal Design 

To examine the quality of the present Pareto 
solutions, the selected wings are compared with 
NAL’s second design as well as the previous wing 
obtained from the three-objective optimization. Table 
4 summarizes aerodynamic performances of four 
wings compared: two present Pareto solutions (4V-A, 
4V-B), the previous Pareto solution (3V) and NAL’s 
second design. All three Pareto solutions are superior 
to NAL’s second design in all four objectives. 
Comparison of wing planform shapes is shown in Fig. 
23. The present and previous planform shapes are 
similar to the “arrow wing” type. On the other hand, 
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NAL’s planform is similar to the conventional “delta 
wing” planform. These results indicate that the 
present arrow wing has good aerodynamic 
performance but doesn’t have a large pitching 
moment because NAL’s design has a higher pitching 
moment. 

The thickness distributions at the wing root and 
33% of the wingspan location of three Pareto 
solutions (4V-A, 4V-B, 3V) are presented in Fig. 24. 
In these figures, Pareto solutions 4V-A and 4V-B 
have much smoother thickness distributions than the 
previous Pareto solution of 3V. The present wings do 
not have a kink in the thickness distribution thanks to 
the improved parameterization, and less likely to 
cause a boundary layer separation. Cp distributions 
and corresponding airfoil shapes at the wing root and 
33% of the wingspan location are also shown in Fig. 
25. Present Cp distributions show much smoother 
distributions than the previous ones due to the 
smooth thickness distributions. From the present Cp 
distributions, it is found that more lift is generated 
near the trailing edge because of the thicker thickness. 
Consequently, although the pitching moment 
minimization is introduced as the fourth objective 
function, pitching moments of present Pareto 
solutions are not dramatically improved. 
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Fig. 23. Comparison of planform shapes among 

selected Pareto solutions and NAL’s design 
 

-0.020

-0.015

-0.010

-0.005

0.000

0.005

0.010

0.015

0.020

0 0.2 0.4 0.6 0.8 1

4V-A
4V-B
3V

t/c

x/c  
(a) Wing root 

-0.020

-0.015

-0.010

-0.005

0.000

0.005

0.010

0.015

0.020

0 0.2 0.4 0.6 0.8 1

4V-A
4V-B
3V

t/c

x/c  
(b) 33% spanwise location 

Fig. 24. Comparison of thickness distributions 
among selected Pareto solutions 

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6 -0.02

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.0 0.2 0.4 0.6 0.8 1.0

C
P
 (4V-A)

C
P
 (4V-B)

C
P
 (3V) Airfoil (4V-A)

Airfoil (4V-B)
Airfoil (3V)

C
P

t/c

x/c  
(a) Wing root 

 

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6 -0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 0.2 0.4 0.6 0.8 1

C
P
 (4V-A)

C
P
 (4V-B)

C
P
 (3V) Airfoil (4V-A)

Airfoil (4V-B)
Airfoil (3V)

C
P

t/c

x/c  
(b) 33% spanwise location 

Fig. 25. Comparison of pressure distributions and 
airfoil shapes among selected Pareto solutions 

 
Table 4. Aerodynamic performances 

 CD,t CD,s MB MP 
4V-A 0.00998863 0.01085439 18.15 62.35 
4V-B 0.01007195 0.01093646 17.39 60.60 
3V 0.01004036 0.01093742 18.21 61.00 

NAL2nd 0.01010175 0.01097646 18.23 63.31 

5. Conclusion 

The multipoint design optimization of a wing for a 
SST has been performed by using MOGAs. Three 
objective functions were first used to minimize the 
supersonic drag, the transonic drag and the bending 
moment at the wing root. The complete wing shape 
was represented by in total of 66 design variables. 
The Navier-Stokes solver was used to evaluate the 
aerodynamic performances. Then, the revised 
optimization was performed to further improve the 
above optimization. The definition of the thickness 
distributions was improved and the minimization of 
the pitching moment was added to the objective 
functions. The resulting optimization contained four 
objective functions and 72 design variables. 
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Successful optimization results are obtained in 
both cases. The planforms of the extreme Pareto 
solutions appear physically reasonable. Global 
tradeoffs between the objectives are presented. 

In the case of the three-objective optimization, one 
Pareto solution has better performance in all three 
objective functions compared with NAL’s second 
design. The comparison of the present Pareto 
solution with the optimal wing designed previously 
under the inviscid flow is also carried out to examine 
the viscous effect. The viscous effect is found to have 
a large influence on the thickness distribution. The 
present result is found better to prevent the possible 
boundary layer separation. The analysis of the Pareto 
solutions suggests that a desirable planform shape is 
the arrow wing with a relatively large taper ratio and 
a relatively small aspect ratio similar to the previous 
inviscid results. 

Then the four-objective optimization was 
performed with smoother thickness definition by 
using ARMOGAs. The resulting Pareto front 
appeared better than the three-objective case thanks 
to the range adaptation. ARMOGAs are confirmed to 
work well in a large search space. By improving the 
definition of the thickness distributions, more 
realistic thickness distributions are obtained. The 
present Pareto solutions superior to NAL’s second 
design in all four objective functions are examined in 
detail. As for the planform, optimal wings are similar 
to the “arrow wing” type. It also shows that the arrow 
wing maintains the pitching moment at reasonable 
levels especially below that of NAL’s second design. 
The resulting arrow wing is considered as a good 
design candidate for the next-generation SST. 
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