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A large-scale, real-world application of Evolutionary Multi-Objective Optimization is
reported. The Multidisciplinary Design Optimization among aerodynamics, structures,
and aeroelasticity of the wing of a transonic regional jet aircraft was performed using high-
fidelity evaluation models. Euler and Navier-Stokes solvers were employed for aerodynamic
evaluation. The commercial software NASTRAN was coupled with a Computational Fluid
Dynamics solver for the structural and aeroelastic evaluations. Adaptive Range Multi-
Objective Genetic Algorithm was employed as an optimizer. The objective functions were
minimizations of block fuel and maximum takeoff weight in addition to drag divergence
between transonic and subsonic flight conditions. As a result, nine non-dominated solu-
tions were generated and used for tradeoff analysis among three objectives. Moreover, all
solutions evaluated during the evolution were analyzed using a Self-Organizing Map as a
Data Mining technique to extract key features of the design space. One of the key fea-
tures found by Data Mining was the non-gull wing geometry, although the present MDO
results showed the reverse-gull wings as non-dominated solutions. When this knowledge
was applied to one optimum solution, the resulting design was found to have better perfor-
mance and to achieve 3.6 percent improvement in the block fuel compared to the original
geometry designed in the conventional manner.

I. Introduction

Recent studies on Multidisciplinary Design Optimization (MDO) have been conducted for aircraft de-
sign1,2. Pure aerodynamic optimization shows wings with a low thickness-to-chord ratio and a high

aspect ratio. These wings suffer undesirable aeroelastic phenomena due to their low bending and torsional
stiffness. Aerostructural interactive optimization is needed to overcome these phenomena and to allow realis-
tic aircraft design3. This multi-objective optimization will provide a good field for application of Evolutionary
Multi-Objective Optimization (EMO).

In Japan, a five year R&D project has been in progress toward the development of an environmentally
friendly high performance small jet aircraft under the auspice from New Energy and Industrial Technology
Development Organization (NEDO) since 2003, in which new technical features have been investigated
including advanced aerodynamics, new materials, and human centered cockpit by industry-government-
university cooperation.

The objective of this study is to optimize the three-dimensional wing shape for the proposed regional
jet aircraft using evolutionary multi-objective optimization with high-fidelity simulations as collaboration
between the Institute of Fluid Science (IFS), Tohoku University, and MHI. From the optimization results,
tradeoff analysis was performed among the three objectives. Moreover, by using a data mining technique,
aerostructural design knowledge for transonic regional jet aircraft has been obtained.
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In the present study, high-fidelity simulation tools, such as Reynolds-averaged Navier-Stokes (N-S) solver
for aerodynamics, NASTRAN, versatile and high-fidelity commercial software, for structures and aeroelastic-
ity were coupled together for MDO. Although the Euler/N-S solver may still be too expensive for real-world
design environments, it can predict complex and nonlinear flow phenomena, such as shock wave and sep-
aration, with a high degree of accuracy. Such nonlinearity will provide a severe test case for EMO. Aided
by the rapid progress in computer hardware, the demonstration described here will become standard design
practice in the near future.

II. Multidisciplinary Design Optimization

A. Objective Functions

In this system, minimization of the block fuel at a required target range derived from aerodynamics and
structures was selected as an objective function. In addition, two more objective functions were considered
— minimization of the maximum takeoff weight and minimization of the difference in the drag coefficient
between two Mach numbers, which are cruise Mach and target Maximum Operating Mach number (MMO),
to prevent decrease MMO.

B. Geometry Definition

First, the planform was given by MHI. The front and rear spar positions were fixed in the structural shape
based on the initial aerodynamic geometry. The wing structural model was substituted with shell elements.

The design variables were related to airfoil, twist, and wing dihedral. The airfoil was defined at three
spanwise cross-sections using the modified PARSEC4 with nine design variables (xup, zup, zxxup , xlo, zlo,
zxxlo

, αTE , βTE , and rLElo
/rLEup) per cross-section as shown in Fig. 1. The twists were defined at six

spanwise locations, and then wing dihedrals were defined at kink and tip locations. The twist center was set
on the trailing edge in the present study. The entire wing shape was thus defined using 35 design variables.
The detail of design variables is summarized in Table 1. In the present study, the geometry of each individual
was generated by the unstructured dynamic mesh method5,6 using displacement from the initial geometry.

Table 1. Detail of design variables.

serial number correspondent design variable
1 to 9 PARSEC airfoil 35.0% semispan location

(xup, zup, zxxup , xlo, zlo, zxxlo
, αTE , βTE , rLElo

/rLEup)
10 to 18 PARSEC airfoil 55.5% semispan location
19 to 27 PARSEC airfoil 77.5% semispan location
28 to 33 Twist angle 19.3%, 27.2%, 35.0%, 55.5%, 77.5%, 96.0%
34, 35 Dihedral 35.0%, 96.0%

Figure 1. Illustration of the modified PARSEC airfoil shape defined by nine design variables.
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C. Constraints

The five constraints were considered in the optimizer. The first three were geometrical constraints, while
the last two were constraints for flight condition as follows:

1. The distribution of the parameter ∆y to describe leading-edge geometry was constrained in the spanwise
direction to prevent abrupt stall characteristics. Here, ∆y denotes an airfoil upper surface ordinate at
6% chord from the leading edge minus the ordinate at 0.15% chord.

2. Rear spar heights were greater than required for housing of the control surfaces.

3. The lower and upper surfaces of the spars changed monotonically in the spanwise direction.

4. The lift coefficients increased monotonically with increasing Mach number to satisfy target MLD (Lift
Divergence Mach number).

5. The evaluated fuel for the given range was less than the wing fuel volume.

D. Optimizer

Evolutionary algorithms (EAs), in particular genetic algorithms (GAs), are based on the theory of evolution,
where a biological population evolves over generations to adapt to an environment by selection, crossover, and
mutation. Fitness, individuals, and genes in the evolutionary theory correspond to the objective function,
design candidates, and design variables in design optimization problems, respectively.

GAs search for optima from multiple points in the design space simultaneously and stochastically. GAs
can prevent the search from settling in a local optimum. Moreover, GAs do not require computing gradients
of the objective function. These features lead to the following advantages of GAs coupled with CFD: 1) GAs
have the capability of finding global optimal solutions. 2) GAs can be processed in parallel. 3) High-fidelity
CFD codes can be adapted to GAs easily without any modification. 4) GAs are not sensitive to any noise
that might be present in the computation.

Adaptive Range Multi-Objective Genetic Algorithm (ARMOGA)7 is an efficient multi-objective evolu-
tionary algorithm (MOEA) designed for aerodynamic optimization and multidisciplinary design optimization
problems using high-fidelity CFD solvers with large computational time. ARMOGA has range adaptation
based on population statistics, and thus the population is re-initialized every N generations so that the
search region adapts toward more promising regions. Because of the re-initialization, ARMOGA can be used
with a small population size similar to Micro-GA8. ARMOGA can be used to obtain the non-dominated
solutions efficiently because of the concentrated search of the probable design space, while keeping diversity.

In the present ARMOGA, the fitness value of each solution is determined by Fleming and Fonseca’s
Pareto-ranking method coupled with the fitness sharing approach9. Each individual is assigned a rank ac-
cording to the number of individuals dominating it. The assigned fitness values are divided by the niche
count, which is calculated by summing the sharing function values. To find the Pareto solutions more effec-
tively, the so-called best-N selection10 is also implemented. After determination of shared fitness values for
all individuals, the Stochastic Universal Selection (SUS)11 is applied to select better solutions for producing a
new generation. Blended crossover (BLX-α)12 and polynomial mutation methods13 are adopted for crossover
and mutation.

E. Evaluation Method

The optimizer generates eight individuals per generation8, and evaluates aerodynamic and structural prop-
erties of each design candidate as follows:

1. Structural optimization is performed to Jig shape to realize minimum wing weight with constraints of
strength and flutter requirements using NASTRAN. And then, weights of wing box and carried fuel
are calculated.

2. Static aeroelastic analysis is performed at three flight conditions to determine the aeroelastic deformed
shapes (1G shape) using the Euler solver and NASTRAN.

3. Aerodynamic evaluations are performed for the 1G shapes using the Navier-Stokes solver.
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Figure 2. Flowchart of the present MDO system.

4. Flight envelope analysis is performed using the properties obtained as above to evaluate the objec-
tive functions. Using the objective functions, the optimizer generates new individuals for the next
generation via genetic operations, such as selection, crossover, and mutation.

The conceptual flowchart for the present MDO system is shown in Fig. 2. In the present study, MSC.
NASTRANTM14 which is a high-fidelity commercial software is employed for the structural and aeroelastic
evaluations. Besides, the in-house unstructured mesh solver named as TAS-Code (Tohoku university Aero-
dynamic Simulation code)15,16 is used to evaluate aerodynamic performance using Euler and Navier-Stokes
equations.

1. Structural Optimization

In the present MDO system, structural optimization of a wing box is performed to realize minimum weight
with constraints of strength and flutter requirements. Given the wing outer mold line for each individual,
the finite element model of wing box is generated automatically by the FEM generator for the structural
optimization. The wing box model mainly consists of shell elements representing skin, spar and rib, and
other wing components, such as control surfaces and subsystems, etc., are modeled using concentrated mass
element. In the present structural optimization, strength and flutter characteristics are evaluated using
MSC. NASTRAN.

For the strength evaluation, the static load is calculated from the pressure distribuion on the wing, which
is computed by the Euler solver, assuming the 4.5G upgust condition, and then static analysis is conducted
where the static load acts on the wing box structure to obtain the stress on each element. For the flutter
evaluation, doublet-lattice method is used to compute the unsteady aerodynamic forces on the wing and p-k
method is employed as a flutter solution to obtain the critical flutter velocity.

The present structural optimization is based on the following optimality criteria:

• For strength optimization
σi

Fi
= Const. (1)

• For flutter optimization
∂VF

∂ti
= Const. (2)
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where σi denotes the stress for i-th element, F is the allowable stress and VF is the flutter velocity. In the
structural optimization, thickness of shell elements is resized iteratively until the weight change is converged
sufficiently under the strength and flutter constraints. The resizing formula is as follows:

• Strength optimization

tnew
i =

toldi

(γmin)i

(3)

• Flutter optimization

tnew
i = toldi ·

√√√√√√√
∂VF

∂ti(
∂VF

∂ti

)
target

(4)

where γmin denotes the minimum strength factor. The strength and flutter constraints are as follows:

σcompressive < Fcompressive (5a)
σtension < Ftension (5b)

σshear < Fshear (5c)
VF > VFrequired (5d)
ti > tmin (5e)

Figure 3 shows the convergence history of structural optimization for the initial geometry.

(a) Strength/flutter (b) Wing box weight

Figure 3. Convergence histories of each characteristic for the initial geometry.

2. Static Aeroelastic Analysis

First, in this module, Euler computation is carried out on an aerodynamic unstructured mesh. As surface
pressure data can be obtained, surface force is computed using the FLEXCFD MHI in-house code as an
interface between aerodynamics and structures. Then, the displacement is calculated from the surface force
using NASTRAN. When this displacement is converged, the static aeroelastic analysis module is finished.
When it is not converged, the aerodynamic mesh is moved using the unstructured dynamic mesh method5,6

to re-calculate Euler computation. As it was assumed that the planform was fixed in the present study, only
displacement in the z-direction was employed in the unstructured dynamic mesh method. The decision of
displacement convergence was employed using the following equations:

∣∣CL(n) − CL(n−1)

∣∣ ≤ 0.0001 if |CL| is small∣∣∣∣CL(n) − CL(n−1)

CL(n−1)

∣∣∣∣ ≤ 0.001 otherwise
(6)
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Figure 4. Flowchart of static aeroelastic analysis. The displacement is enlarged by a factor 10 to emphasize
aeroelastic deformed shape.

(a) Deformation in z-direction at leading/trailing edge (b) Torsional deformation (positive: pitch-up)

Figure 5. Static aeroelastic deformation of the initial geometry.
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The flowchart of this module is shown in Fig. 4, and the results of static aeroelastic analysis for the initial
geometry are shown in Fig. 5. The displacement computed by the present static aeroelastic analysis usually
converges after three iterations.

3. Aerodynamic Evaluation

In the present study, TAS-Code was employed for aerodynamic evaluation. The three-dimensional Reynolds-
averaged Navier-Stokes (RANS) equations were computed with a finite-volume cell-vertex scheme. The
unstructured hybrid mesh method17 was applied to capture the boundary layer accurately and efficiently.
The Harten-Lax-van Leer-Einfeldt-Wada Riemann solver18 was used for the numerical flux computations.
The Venkatakrishnan’s limiter19 was applied when reconstructing the second order accuracy. The lower-upper
symmetric-Gauss-Seidel implicit scheme20 was applied for time integration. Figure 6 shows the unstructured
CFD mesh and the wing box element for the structural FEM model. Moreover, Fig. 7 shows the unstructured
meshes for Euler and N-S computations. For the N-S computations, prism layers were stacked in 20 layers
on the body surface.

With regard to the turbulence model, the Spalart-Allmaras one-equation model modified by Dacles-
Mariani et al.21 was employed without transition. This model was confirmed to be effective for capturing
the complex vortex structure22.

Euler and RANS computations were carried out under subsonic and transonic flight conditions, respec-
tively. Taking advantage of the parallel search in EAs, the present optimization was parallelized on vector-
parallel machines (NEC SX-5 and SX-7). The master processing element (PE) managed ARMOGA, while
the slave PEs computed aerostructural evaluation processes. Slave processes did not require synchronization.

Figure 6. Visualization between unstructured surface
mesh for aerodynamic CFD model and wing box ele-
ment for structural FEM model.

Figure 7. Visualization of unstructured volume
meshes; Left is generated by all tetrahedron mesh for
Euler computation. Right is generated by hybrid mesh
for N-S computation. Lowers are close-up views in the
vicinity of respective wing tip.

4. Flight Envelope Analysis

Finally, the Block Fuel Module was excuted to evaluate three objective functions as block fuel, maximum
takeoff weight, and drag divergence, and to check the constraints for flight conditions shown in Fig. 2. In
this module, the wing box weight for structural-optimized shape and aerodynamic performance were used
as input. As all eight individuals were evaluated, the work of the slave PEs was finished in one generation.
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III. Optimization Results

The population size was set to eight, and then roughly 70 Euler and 90 RANS computations were per-
formed in one generation. It took roughly one and nine hours of CPU time on NEC SX-5 and SX-7 per PE
for single Euler and RANS computations, respectively. The population was re-initialized every five genera-
tions for the range adaptation. First, evolutionary computation was performed for 17 generations. Then, the
evolutionary operation was restarted using eight non-dominated solutions extracted from all solution of 17
generations, and two more generations were computed. A total evolutionary computation of 19 generations
was carried out. The evolution may not converge yet. However, the results were satisfactory because several
non-dominated solutions achieved significant improvements over the initial design. Furthermore, a sufficient
number of solutions were searched such that the sensitivity of the design space around the initial design
could be analyzed. This will provide useful information for designers.

All solutions evaluated are shown in Fig. 8, and Fig. 9 shows all solutions projected on a two-dimensional
plane between two objectives, the block fuel, and the drag divergence. As this figure shows that the non-
dominated front was generated, there was a tradeoff between the block fuel and the drag divergence. All
solutions projected on two-dimensional planes between other combinations were shown in Figs. 10 and 11.
As the non-dominated solutions did not comprise Pareto front, these figures showed that there were no global
tradeoff between these combinations of the objective functions.

Figure 8. All solutions plotted in three-dimensional
space of all objective functions.

Figure 9. All solutions on two-dimensional plane be-
tween block fuel and CD divergence.

Figure 10. All solutions on two-dimensional plane be-
tween block fuel and maximum takeoff weight.

Figure 11. All solutions on two-dimensional plane be-
tween maximum takeoff weight and CD divergence.
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A. Comparison between Initial and Optimized Geometries

Although the wing box weight tends to increase as compared with that of the initial geometry, the block fuel
can be reduced. Thus, the aerodynamic performance can redeem the penalty due to the structural weight.
An individual on the non-dominated front shown in Fig. 9 was selected, indicated as ‘optimized’, and then
the optimized geometry was compared with the initial geometry.

Figure 12 shows each displacement obtained by static aeroelastic analysis. This figure shows that the
displacements were not markedly different between upward and downward on the leading and trailing edges.
Whereas, twisting displacement was slightly reduced in the vicinity of the kink as 35.0% spanwise location,
and then the outboard wing was bent upward as a whole. These phenomena predict reduction of the shock
wave near the kink, i.e., reduction of wave drag, and an increase in the generation of CL at the outboard
wing.

Figures 13 and 14 show a comparison of polar curves. Although the drag minimization was not considered
here, CD was reduced. The sensitivity of aerodynamic performance, such as CL, CD, and CMp, to angle of
attack α did not depend on Mach numbers very much. By comparison of the polar curves at constant CL

for the cruising condition, CD of the optimized geometry was found to be reduced by 5.5 counts. Due to the
improvement of the drag, the block fuel of the optimized geometry was decreased by over one percent even
with its structural weight penalty.

Next, the mechanism of the drag reduction was investigated. Figure 15 shows a comparison of the
spanwise distributions of CL and CD of the initial and optimized geometries. This figure shows that the drag
decreased at the 35.0% spanwise location. Figure 16 shows a comparison of the pressure distributions at the
35.0% spanwise location. Then, the variation in the leading-edge bluntness works to depress the shock wave
on the upper wing surface, i.e., to reduce the wave drag. In fact, the pressure drag coefficient was reduced
by 5.6 counts. Figure 17 shows a comparison of the shock wave visualized by the shock function Fshock

23,
which is given as follows:

Fshock =
V · ∇P

a · |∇P |
(7)

where V is the velocity vector, P is pressure, and a denotes the local speed of sound.
The shock wave of the optimized geometry was weaker than that of the initial geometry in the vicinity of

the 35.0% spanwise location as shown in Fig. 17 indicating the wave drag reduction. Moreover, the vorticity
of the wing wake of the optimized geometry in the vicinity of the 35.0% spanwise location was weaker than
that of the initial geometry as shown by helicity contours in Fig. 18. Therefore, these figures show that
the shape change near the 35.0% spanwise location, i.e., the shape modification in the vicinity of the kink
is effective to reduce the drag. Figure 18 also shows strong vortices in the vicinity of the fairing. Thus,
improvement of fairing design should be considered in future.

(a) Deformation in z-direction at leading/trailing edge (b) Tortional deformation (positive: pitch-up)

Figure 12. Comparison of static aeroelastic deformation between initial and optimized geometries.
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Figure 13. Comparison of the polar curves of CL-¸, CD-¸ and CMp-¸ between initial and optimized geometries
under transonic flight condition.

B. Comparison between Weak Non-dominated Solutions with Regard to Block Fuel

Figures 9 to 11 show that there is a tradeoff only between block fuel and CD divergence. To investigate
the geometric sensitivity to the primary objective, block fuel, aerodynamic performance was compared
between weak non-dominated solutions. Left-side and right-side weak non-dominated solutions are named
as ‘Nondom a’ and ‘Nondom b’, respectively in Fig. 9.

Figure 19 shows displacements obtained by static aeroelastic analysis. This figure shows no marked
differences in upward or downward displacements on both the leading and trailing edges. However, there
was a difference in twisting between the 50% to 85% spanwise location. Figures 20 and 21 show the polar
curves under subsonic and transonic flight conditions. CL-CD curves of both flight conditions appear very
similar. It should be noted that CD is more sensitive to α. Although there were no differences in the
sensitivity of CL and CMp to α, the increase ratios of CD were different as shown in CD-α curves in Fig. 20.
This tendency was pronounced more when the Mach number increased. This result indicated that the CD

increase follows the CL increase to achieve an increase in L/D. In fact, Nondom a geometry showed an L/D
increase of roughly 3.2% at the cruise condition as compared with Nondom b. Therefore, under subsonic
and transonic flight conditions L/D is found highly related to block fuel improvements. Especially, transonic
L/D was more sensitive because of its nonlinearity in α.

The mechanism of L/D increase depends on the bluntness of the upper surface of the leading edge. The
PARSEC design variable rLElo

/rLEup , which is the leading-edge bluntness ratio between the lower and upper
surfaces, for Nondom a was one-tenth higher than the value for Nondom b at the 35.0% spanwise location.
Therefore, the curvature of Nondom b was smaller, shock wave becomes weaker, and then wave drag reduced.
Figure 22 shows Cp distributions at three spanwise locations. The shock wave on the wing of Nondom b
as a whole was clearly depressed. This result was also confirmed on the shock wave visualization shown in
Fig. 23. However, helicity contours did not show a clear distinction in Fig. 24. Thus, the CD decrease may
be dependent only on the wave drag.
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Figure 14. Comparison of the CL-CD curves be-
tween initial and optimized geometries under tran-
sonic flight condition.

Figure 15. Comparison of CL and CD spanwise dis-
tributions between initial and optimized geometries
under transonic cruising flight condition. CL is con-
stant.

Figure 16. Comparison of Cp distributions between initial and optimized geometries under transonic cruising
flight condition at 35.0, 55.5, and 77.5% semispan locations, respectively. CL is constant.

Figure 17. Comparison of shock wave visualizations colored by entropy under the transonic cruising flight
condition between initial (left) and optimized (right) geometries. CL is constant.

11 of 24

American Institute of Aeronautics and Astronautics Paper 2005-5080



Figure 18. Comparison of helicity contours of wing wake of x=L = 0:7 under the transonic cruising flight
condition between initial (left) and optimized (right) geometries. CL is constant. Vortical rotation direction
is colored symmetrically.

(a) Deformation in z-direction at leading/trailing edge (b) Torsional deformation (positive: pitch-up)

Figure 19. Comparison of static aeroelastic deformation between weak non-dominated solutions.

Figure 20. Comparison of the polar curves of CL-¸, CD-¸ and CMp-¸ between weak non-dominated solutions
geometries under transonic cruising flight condition.
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Figure 21. Comparison of the CL-CD curves between weak non-dominated solutions under transonic cruising
flight condition.

Figure 22. Comparison of the pressure distributions between weak non-dominated solution geometries under
transonic cruising flight condition at 35.0, 55.5 and 77.5% semispan locations, respectively.

Figure 23. Comparison of shock wave visualizations colored by entropy under the transonic cruising flight
condition between weak non-dominated solutions of nondom a (left) and nondom b (right) geometries.

Figure 24. Comparison of helicity contours of wing wake of x=L = 0:7 under the transonic cruising flight con-
dition between weak non-dominated solutions of nondom a (left) and nondom b (right) geometries. Vortical
rotation direction is colored symmetrically.
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IV. Data Mining

If the optimization problem has only two objectives, tradeoffs can be visualized easily. However, if there
are more than two objectives, the technique to visualize the computed non-dominated solutions is needed.
Therefore, in the present study, Self-Organizing Maps (SOMs) proposed by Kohonen24 were employed.

A. Self-Organizing Map

SOM is a technique not only for visualization but also a tool for the intelligent compression of information.
That is, SOM can be applied for data mining to acquire knowledge regarding the design space. In the present
study, Viscovery R© SOMine25 (Eudaptics GmbH, Austria) was employed.

1. Neural Network and SOMs

SOM is a two-dimensional array of neurons:

M = {m1 · · ·mp×q} (8)

One neuron is a vector called the codebook vector:

m = [mi1 · · ·min ] (9)

This has the same dimension as the input vectors. The neurons are connected to adjacent neurons by a
neighborhood relation. This dictates the topology, or the structure, of the map. Usually, the neurons are
connected to each other via rectangular or hexagonal topology. One can also define a distance between the
map units according to their topology relations. Immediate neighbors (the neurons that are adjacent) belong
to the neighborhood Nc of the neuron mc. The neighborhood function should be a decreasing function of
time:

Nc = Nc(t) (10)

The training consists of drawing sample vectors from the input data set and “teaching” them to the SOM.
The teaching consists of choosing a winner unit by the means of a similarity measure and updating the values
of codebook vectors in the neighborhood of the winner unit. This process is repeated a number of times.
In one training step, one sample vector is drawn randomly from the input data set. This vector is fed to
all units in the network and a similarity measure is calculated between the input data sample and all the
codebook vectors. The best-matching unit is chosen to be the codebook vector with greatest similarity with
the input sample. The similarity is usially defined by means of a distance measure. For example in the case
of Euclidean distance the best-matching unit is the closest neuron to the sample in the input space.

The best-matching unit, usually noted as mc, is the codebook vector that matches a given input vector
x best. It is defined formally as the neuron for which

‖x − mc‖ = min
i

[‖x − mi‖] (11)

After finding the best-matching unit, units in the SOM are updated. During the update procedure, the
best-matching unit is updated to be a little closer to the sample vector in the input space. The topological
neighbors of the best-matching unit are also similarly updated. This update procedure stretches the best-
matching unit and its topological neighbors towards the sample vector. The codebook vectors are situated
in the crossings of the solid lines. The topological relationships of the SOM are drawn with lines. THe input
fed to the network is marked bye x in the input space. The best-matching unit, or the winner neuron is
the codebook vector closest to the sample, in this example the codebook vector in the middle above x. The
winner neuron and its topological neighbors are updated by moving them a little towards the input sample.
The neighborhood in this case consists of the eight neighboring units in the figure. The updated network is
shown in the same figure with dashed lines.
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2. Viscovery SOMine

Although SOMine is based on the SOM concept and algorithm, it employs an advanced variant of unsuper-
vised neural networks, i.e. Kohonen’s Batch-SOM.

The algorithm consists of two steps that are iteratively repeated until no more significant changes occur.
First the distances between all data items {xi} and the model vectors {mj} are computed and each data
intem xi is assigned to the unit ci that represents it best.

In the second step, each model vector is adapted to better fit the data it represents. To ensure that each
unit j represents similar data items as its neighbors, the model vector mj is adapted not only according to the
assigned data items but also inregard to those assigned to the units in the neighborhood. The neighborhood
relationship between two units j and k is usually defined by a Gaussian-like function

hjk = exp

(
−

d2
jk

r2
t

)
(12)

where djk denotes the distance between the units j and k on the map, and rt denotes the neighborhood
radius which is set to decrease with each iteration t.

Assuming a Euclidean vector space, the two steps of the Batch-SOM algorithm can be formulated as

ci = arg min ‖xi − mj‖ (13a)

m∗
j =

∑
i

hjcixi∑
i

hjci

(13b)

where m∗
j is the updated model vector.

In contrast to the standard Kohonen algorithm, which makes a learning update of the neuron weights
after each record being read and matched, the Batch-SOM takes a ‘batch’ of data, typically all records,
and performs a ‘collected’ update of the neuron weights after all records have been matched. This is much
like ‘epoch’ learning in supervised neural networks. The Batch-SOM is a more robust approach, since
it mediates over a large number of learning steps. Most important, no learning rate is required. The
SOMine implementation combines four enhancements to the plain Batch-SOM algorithm(See Ref.26 for
more details). In SOMine, the uniqueness of the map is ensured by the adoption of the Batch-SOM and the
linear initialization for input data.

Much like some other SOMs27, SOMine creates a map in a two-dimensional hexagonal grid. Starting
from numerical, multivariate data, the nodes on the grid gradually adapt to the intrinsic shape of the data
distribution. Since the order on the grid reflects the neighborhood within the data, features of the data
distribution can be read off from the emerging map on the grid.

In SOMine, the trained SOM is systematically converted into visual information. The tool provides an
extensive built-in capability for both pre-processing and post-processing as well as for the automatic color-
coding of the map and its components. SOMine is particularly useful in the determination of dependencies
between variables as well as in the analysis of high-dimensional cluster distributions.

3. Cluster Analysis

Once SOM projects input space on a low-dimensional regular grid, the map can be utilized to visualize and
explore properties of the data. When the number of SOM units is large, tofacilitate quantitative analysis
of the map and the data, similar units need to be grouped, i.e., clustered. The two-stage procedure —
first using SOM to produce the prototypes which are then clustered in the second stage — was reported to
perform well when compared to direct clustering of the data27.

Hierarchical agglomerative algorithm is used for clustering here. The algorithm stats with a clustering
where each node by itself forms a cluster. In each step of the algorithm two clusters are merged: those with
minimal distance according to a special distance measure, the SOM-Ward distance25. This measure takes
into account whether two clusters are adjacent in the map. This means that the process of merging clusters
is restricted to topologically neighbored clusters. The number of clusters will be different according to the
hierarchical sequence of clustering. A relatively small number will be chosen for visualization, while a large
number will be used for generation of codebook vectors for respective design variables.
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B. Knowledge in the Design Space

1. Tradeoff Analysis of the Design Space

All of the solutions have been projected onto the two-dimensional map of SOM. Figure 25 shows the resulting
SOM with 11 clusters considering the three objectives. Furthermore, Fig. 26 shows the SOMs colored by
the three objectives. These color figures show that the SOM indicated in Fig. 25 can be grouped as follows:
The upper left corner corresponds to the designs with high block fuel and maximum takeoff weight. The
left center area corresponds to designs with high maximum takeoff weight and CD divergence. The lower
left corner corresponds to designs with low block fuel and high CD divergence. Figure 26(a) and Fig. 26(c)
show that there is a tradeoff between these two objective functions. The lower center area corresponds to
designs with low block fuel. The right hand side corresponds to designs with low CD divergence. As the
coloring in Fig. 26(a) is similar to that in Fig. 26(b), there was not a severe tradeoff between the block
fuel and the maximum takeoff weight. The lower right corner corresponds to designs with low value of
all objectives. Extreme non-dominated solutions are indicated in Fig. 26(a) to (c). As they are in different
clusters, the simultaneous optimization of the three objectives is impossible. However, the lower right cluster
has relatively low values for all three objectives. Thus, this region of the design space may provide a sweet
spot for the present design problem.

Figure 25. SOM of all solutions in the three-dimensional objective function space.

(a) SOM colored by the block fuel as

the objective function 1

(b) SOM colored by the max takeoff

weight as the objective function 2

(c) SOM colored by the CD divergence

as the objective function 3

Figure 26. SOM colored by the objective functions. The symbol ˆ denotes the respective extreme non-
dominated solutions.
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2. Effects of Aerodynamic Performance on Objective Functions

Figure 27 shows the SOMs colored by the aerodynamic performance under transonic cruising flight condition.
Figures 27(a) and (b) show the SOMs colored by CL and CD, respectively. As these figures show similar
coloring, the L/D increase is not so easy. Lower CD values are located in the lower right corner in Fig. 27(b).
As this area clusters designs with low value of all objectives, this observation suggests that when all objectives
are optimized simultaneously, the CD under the cruising flight condition is also reduced. Furthermore, as
the clusters of lower values of the maximum takeoff weight shown in Fig. 26(b) appears on the right hand
side of the map, CD can be decreased simaltaneously with the maximum takeoff weight. As the area with
higher CD shown in Fig. 27(b) generally coincide with the area with higher objective fuction values, CD is
a very important performance index.

(a) SOM colored by CL (b) SOM colored by CD

(c) SOM colored by L/D (d) SOM colored by CMp

Figure 27. SOM colored by aerodynamic performance under transonic cruising flight condition.

(a) SOM colored by CL (b) SOM colored by CD

Figure 28. SOM colored by aerodynamic performance under subsonic flight condition.

Figure 27(c) shows the SOM colored by L/D; lower values are located in the upper left corner. As the
higher values of the block fuel shown in Fig. 26(a) are present at the same location, lower L/D makes the

17 of 24

American Institute of Aeronautics and Astronautics Paper 2005-5080



block fuel worse. Furthermore, higher L/D values are located in the lower area shown in Fig. 27(c). As the
lower values of the block fuel shown in Fig. 26(a) are present at the same area, higher L/D was effective to
decrease the block fuel. However, higher transonic L/D values were not necessarily effective to reduce the
block fuel in Fig. 27(c) because not only the cruise condition but also the complete flight profile from takeoff
to landing were considered in the present study.

Figure 27(d) shows the SOM colored by CMp. When CMp increases and CL decreases and L/D is reduced.
CL and CD increase with decreasing CMp. That is, a decrease in CMp makes the objective function values
worse.

Figure 28 shows the SOM colored by CL and CD under subsonic flight condition. As the resulting SOMs
appear similar to transonic CL and CD shown in Fig. 27(a) and (b), their influences to the objective functions
were also the same. That is, the effects of subsonic aerodynamic performance on objective functions might
be predicted from the effects of transonic aerodynamic performance in the present study.

(a) SOM colored by the constraint as

wing box volume

(b) SOM colored by the ranking in the

optimizer

(c) SOM colored by the angle on up-

per surface expressing the gull-wing at

kink location

Figure 29. SOM colored by the characteristic values.

3. Additional Characteristics

Figure 29 shows the SOM colored by three other characteristic values. Figure 29(a) shows the SOM colored
by the constraints of the evaluated fuel mass. The colored values are defined as follows:

V alue = Volumerequired fuel − Volumefuel capacity (14)

where, Volumerequired fuel denotes the fuel volume required to fly the given range, and Volumefuel capacity

denotes the fuel capacity volume that can actually be carried in the wing. When this value is greater than
zero, the aircraft cannot fly the given range. As the area with values of over zero corresponds to the area
with high maximum takeoff weight, the aerodynamic characteristics and design values that have effects on
maximum takeoff weight dominate this constraint.

Figure 29(b) shows the SOM colored by the ranking in the optimizer. As the upper left region has a
poorer ranking, larger block fuel and maximum takeoff weight as objective functions 1 and 2 dominate the
poor ranking. In contract, the lower left area with higher CD divergence does not have poor ranking. These
observations indicate that improvement in CD divergence is not dominated by the specific aerodynamic
performance and design variables, and further improvement cannot be achieved by the present problem
easily.

Figure 29(c) shows the SOM colored by the angle between inboard and outboard on the upper wing
surface for the gull-wing at the kink location. Angles greater and less than 180 deg correspond to gull
and inverted gull-wing, respectively. The characteristic inverted gull-wing shape is shown in Fig. 30. The
locations of higher values of this angle as shown in Fig. 29(c) correspond to positions of higher CD under
the transonic cruising flight condition shown in Fig. 27(b). However, at angles less than 180 deg, there
was little correlation between Fig. 27(b) and Fig. 29(c). The inverted gull-wing did not affect aerodynamic
performance. The inverted gull-wing is known to have a structural weight increase, which is also observed in
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Figure 30. Visualization of a characteristic inverted gull-wing.

the present results. Indeed, the locations of higher angles in Fig. 29(c) had higher maximum takeoff weights
as shown in Fig. 26(b). Therefore, non-gull wings should be designed in future.

4. Effects of Design Variables

Finally, Fig. 31 and Fig. 32 show the SOMs colored by the selected design variables with regard to the
PARSEC airfoil parameters at 35.0% and 55.5% spanwise locations, respectively. Moreover, Fig. 33 shows
the SOM colored by the design variable, twist angle. The design variables can be summarized as follows,
taking into consideration the effects on each objective function and aerodynamic performance.

There are no design variables that show large effects on objective function 1 as block fuel. The large
twist angles at the 35.0% spanwise location makes objective function 2 as maximum takeoff weight worse. In
addition, large twist angles at the 55.5% spanwise location increase objective function 3 as CD divergence.
However, no design variable of the PARSEC airfoil had apparent effects on any objective functions by itself.
As shown later, PARSEC design variables have direct effects on aerodynamic performances. However, the
present objective functions are not pure aerodynamic characteristics. Therefore, effects of the design variables
on the objective functions were not trivial. There were no design variables and no aerodynamic characteristics
that were effective on the sweet spot with relatively low values for all three objective functions. Therefore,
the individual that resides in the sweet spot cannot be generated by hand. A correlation between objective
function and design variable is desirable when the sensitivity of the design variable is to be investigated; this
is one of the important aspects in optimization problems in general.

Next, the effects of design variables on aerodynamic performance were investigated. From the correspon-
dence between Figs. 27, 31, 32, and 33, the effects of respective design variables are summarized in Tables 2
to 4. These tables indicate that the design variables of the PARSEC airfoil have effects on aerodynamic
performance directly. It is noted that the effects of design variables to CD can be predicted from the above
results because Figs. 27(a) and (b) are similar. Furthermore, the effects of design variable on aerodynamic
performance under the subsonic flight condition can be predicted because the SOMs appeared similar at the
transonic and subsonic flight conditions as shown in Figs. 27 and 28. The leading-edge curvature of PARSEC
airfoil at 35.0% spanwise location was effective to L/D and CMp.

The geometry near the 55.5% spanwise location was not changed markedly with regard to twist angle,
as shown in Fig. 33(b). The geometry near the 96.0% spanwise location was changed to upward twisting.
Conversely, the geometry near the 35.0% spanwise location was changed to downward twisting. The im-
provement in the vicinity of the 35.0% spanwise location restrained the shock wave, reducing the wave drag
shown in Fig. 17. When the drag decreases, the lift may decrease simultaneously. The lift was increased to
compensate for the reduction in the vicinity of the kink so that the angle of attack of the outboard wing
was increased although the wing is still twisted down. It should be noted that the angle of attack near
the kink had an effect on the transonic drag, especially as shown in Fig. 33(a). This corresponds to the
phenomena shown in Fig. 17. Specifically, the shock wave in the vicinity of the kink is weakened. The angle
of attack near the kink with downward twisting is replaced from the initial geometry and the lost lift is
made up to replace the angle of attack at the outboard wing with upward twisting so that the wave drag is
reduced near the kink. Upward twisting at the outboard wing has no influence on transonic drag, as shown
in Fig. 33(c). This corresponds to the prediction shown in Fig. 12. The other design variables were not
effective to reduce the objective functions or to increase aerodynamic performance as CD and L/D under
transonic cruise flight condition. Data Mining techniques using SOM were found to be able to classify the
design variables considering their influence on the objectives and aerodynamic performance.

Design knowledge regarding the block fuel, which is the most important element of the present optimiza-
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Table 2. Effects of design variables to CL under transonic cruising flight condition.

design variable CL

PARSEC αTE @ 35.0% decrease increase
PARSEC xup @ 55.5% increase increase
PARSEC xlo @ 55.5% decrease increase

Twist @ 35.0% increase increase
Twist @ 55.5% increase increase

Table 3. Effects of design variables to L=D under transonic cruising flight condition.

design variable L/D

PARSEC rLElo
/rLEup @ 35.0% decrease decrease

PARSEC zxxlo
@ 55.5% increase decrease

Table 4. Effects of design variables to CMp under transonic cruising flight condition.

design variable CMp

PARSEC αTE @ 35.0% decrease decrease
PARSEC βTE @ 35.0% decrease decrease

PARSEC rLElo
/rLEup @ 35.0% decrease increase

PARSEC xup @ 55.5% increase decrease
PARSEC xlo @ 55.5% decrease decrease

PARSEC zxxlo
@ 55.5% increase increase

tion problem, will be considered. The following two points are the keys to improve the block fuel: 1) L/D
increase, 2) dCD/dα increase, at any Mach number. However, there were no single design variable in the
present design space capable of satisfying them simultaneously. In fact, this was confirmed by the SOMs.
Although PARSEC design variables correspond to aerodynamic performances, there are no direct effects on
other objective functions. It would be easier to understand the design space if the design variables have
direct influences to the objective functions.

C. Evaluation of the Non-Gull Geometry

The design knowledge obtained by SOM shows that a non-gull wing should be designed. Therefore, we
modified the optimized wing shape which achieved the highest improvement in the block fuel to the non-gull
wing shape (called as ‘optimized mod’) to verify the design knowledge otbained by the previous Data Mining.

The result is shown in Figs. 34 to 36. These figures show that optimized mod improves both block fuel
and maximum takeoff weight. Moreover, by comparison of the polar curves at constant CL for cruising
condition shown in Fig. 37, CD of optimized mod was found to be reduced by 10.6 counts over the initial
geometry. Due to the improvement of drag, the block fuel of optimized mod was reduced by 3.6 percent.

In the present MDO system, surface spline function of the geometry deviation ∆Z was used for the
modification of the wing shape (surface mesh) then the volume mesh was modified by the unstructured
dynamic mesh method. However, this process made the surface mesh distorted around the leading edge and
highly limited the design space shown in Fig. 38. This mesh generation process might be the primary reason
for the difficulty in finding the non-gull geometry with better block fuel performance. The secondary reason
is that only the small number of the generations has been performed. However, this result reveals that Data
Mining technique salvages the information. It is demonstrated that the knowledge discovery by Data Minig
regarding design space is an imprtant aspect in the practical optimization.
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(a) SOM colored by PARSEC αT E (b) SOM colored by PARSEC βT E
(c) SOM colored by PARSEC

rLElo
/rLEup

Figure 31. SOM colored by characteristic design variables regarding the PARSEC airfoil at 35.0% spanwise
location. The minimum and maximum values of color bar are set using the minimum and maximum values of
each design variable in optimizer, respectively.

(a) SOM colored by PARSEC xup (b) SOM colored by PARSEC xlo
(c) SOM colored by PARSEC zxxlo

Figure 32. SOM colored by the characteristic design variables regarding the PARSEC airfoil at 55.5% spanwise
location. The minimum and maximum values of color bar are set using the minimum and maximum values of
each design variable in optimizer, respectively.

(a) SOM colored by the twist angle at

35.0% spanwise location

(b) SOM colored by the twist angle at

55.5% spanwise location

(c) SOM colored by the twist angle at

96.0% spanwise location

Figure 33. SOM colored by the characteristic design variables involving wing twist. The minimum and
maximum values of color bar are set using the minimum and maximum values of each design variable in
optimizer, respectively.
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Figure 34. Comparison of optimized mod and all so-
lutions on two-dimensional plane between block fuel
and CD divergence.

Figure 35. Comparison of optimized mod and all so-
lutions on two-dimensional plane between block fuel
and maximum takeoff weight.

Figure 36. Comparison of optimized mod and all so-
lutions on two-dimensional plane between maximum
takeoff weight and CD divergence.

Figure 37. Comparison of the CL-CD curves
among three geometries as initial, optimized, and
optimized mod under transonic flight condition.

Figure 38. Example of distorted mesh in the vicinity of leading edge.
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V. Conclusion

The wing shape of a regional jet aircraft was optimized using ARMOGA considering three aerostructural
objective functions with high-fidelity evaluations. Consequently, the objective function value considering
block fuel was reduced by over one percent as compared with the initial geometry. The geometry change in
the vicinity of the kink was found to be effective for drag reduction. The tradeoff information among the
three objective functions was revealed, and a main tradeoff was found between the block fuel and the drag
divergence.

Moreover, Data Mining for the design space was performed using a Self-Organizing Map. As a result,
particular design variables effective to improve the objective functions and aerodynamic performance were
found. Detailed observations of SOM revealed that there is a sweet spot in the design space where the three
objectives become relatively low.

One of the key features found by Data Mining was the non-gull wing geometry, although the present
MDO results showed the inverted gull-wings as non-dominated solutions. When this knowledge was applied
to one optimum solution, the resulting design was found to have better performance and to achieve 3.6 per-
cent improvement in the block fuel compared to the original geometry designed in the conventional manner.
The Data Mining technique provides knowledge regarding the design space and may salvage lost informa-
tion during the optimization operation, which will be an important facet of solving practical optimization
problems.
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