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Abstract 
Self-Organizing Map (SOM) has been applied to 

analyze 766 Pareto solutions obtained from the 
four-objective aerodynamic optimization of supersonic 
wings using Evolutionary Algorithms. Three- 
dimensional Pareto front (tradeoff surface) is mapped 
onto the two-dimensional SOM where global tradeoffs 
are successfully visualized. Furthermore, from the 
clusters obtained in the SOM, the design variables are 
mapped onto another SOM. This leads to clusters of 
design variables which indicate the relative importance 
of design variables and their interactions. SOM is 
confirmed to be a versatile datamining tool for 
aeronautical engineering. 

 
1. Introduction∗ 

Multiobjective Evolutionary Algorithms (MOEAs) 
are getting popular in many fields because they will 
provide a unique opportunity to address global tradeoffs 
between multiple objectives by sampling a number of 
Pareto solutions. Especially in the field of aeronautical 
engineering, a series of study for aerodynamic design 
of supersonic wings has been performed by the present 
authors[1-3]. In the latest report[3], four design 
objectives were used and the resulting Pareto front was 
obtained as a three-dimensional surface in the four- 
dimensional objective function space. Although 766 
Pareto solutions were obtained in total, only a few 
solutions were examined in detail. This is a typical case 
that computer produces/accumulates too much data. To 
make a good use of the large data, datamining 
techniques are needed.  

One of the popular datamining techniques is the 
Self-Organizing Map (SOM) by Kohonen[4,5]. The 
SOM is one of neural network models. The SOM 
algorithm is based on unsupervised, competitive 
learning. It provides a topology preserving mapping 
from the high dimensional space to map units. Map 
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units, or neurons, usually form a two-dimensional 
lattice and thus the mapping is a mapping from high 
dimensional space onto a plane. The property of 
topology preserving means that the mapping preserves 
the relative distance between the points. Points that are 
near each other in the input space are mapped to nearby 
map units in the SOM. The SOM can thus serve as a 
cluster analyzing tool of high-dimensional data.  

In this paper, the SOM is applied to map Pareto 
solutions obtained in [3]. This will reveal the global 
tradeoffs between four design objectives. Furthermore, 
from the clusters obtained in the SOM, the relations 
between design variables are mapped onto another 
SOM. This will indicate the relative importance of 
design variables and their interactions. 
 

2. Multiobjective Aerodynamic Optimization 
2.1 Formulation of Four-Objective Optimization 

The objective functions used in [3] can be stated as 
follows: 

1. Drag coefficient at transonic cruise, CD,t 
2. Drag coefficient at supersonic cruise, CD,s 
3. Bending moment at the wing root at supersonic 

cruise condition, MB 
4. Pitching moment at supersonic cruise condition, 

MP 
In the present optimization, all four objective 

functions are to be minimized. The transonic drag 
minimization corresponds to the cruise over land, the 
supersonic drag minimization corresponds to the cruise 
over sea. Lower bending moments allow less structural 
weight to support the wing. Lower pitching moments 
mean less trim drag.  

The present optimization is performed at two design 
points for the transonic and supersonic cruises. 
Corresponding flow conditions and the target lift 
coefficients are described as 
1. Transonic cruising Mach number, M∞,t = 0.9 
2. Supersonic cruising Mach number, M∞,s = 2.0 
3. Target lift coefficient at transonic cruising 

condition, CL,t = 0.15 
4. Target lift coefficient at supersonic cruising 

condition, CL,s = 0.10 
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5. Reynolds number based on the root chord length 
at both conditions, Re = 1.0 x 107 

Flight altitude is assumed at 10 km for the transonic 
cruise and at 15 km for the supersonic cruise. To 
maintain lift constraints, the angle of attack is 
computed for each configuration by using CLα obtained 
from the finite difference. Thus, three Navier-Stokes 
computations per evaluation are required. During the 
aerodynamic optimization, wing area is frozen at a 
constant value. 

Design variables are categorized to planform, airfoil 
shapes and the wing twist. The wing planform is 
determined by six design variables as shown in Fig. 1. 
A chord length at the wing tip is determined 
accordingly because of the fixed wing area. Airfoil 
shapes are composed of its thickness distribution and 
camber line. The thickness distribution is represented 
by a Bézier curve defined by nine polygons. The wing 
thickness is constrained for structural strength. The 
thickness distributions are defined at the wing root, 
kink and tip, and then linearly interpolated in the 
spanwise direction. The total number of polygons is 33 
for the entire thickness distribution.  

The camber surfaces composed of the airfoil camber 
lines are defined at the inboard and outboard of the 
wing separately. Each surface is represented by the 
Bézier surface defined by four polygons in the 
chordwise direction and three in the spanwise direction. 
The number of polygons that defines two camber 
surfaces is 20 in total. Finally, the wing twist is 
represented by a B-spline curve with six polygons. As a 
result, 72 design variables are used to define a whole 
wing shape. In Fig. 2, a three-dimensional wing with 
computational structured grid is illustrated. See [3] for 
details. 

 
2.2 Overview of Pareto Solutions 

The evolution was computed for 75 generations. 
After the computation, all the solutions evolved were 
sorted again to find the final Pareto solutions. The 
Pareto solutions were obtained in the four-dimensional 
objective function space. To understand the distribution 
of Pareto solutions in a conventional manner, all Pareto 
solutions are projected into the two-dimensional 
objective function space between transonic and 
supersonic drag coefficients as shown in Fig. 3. In Fig. 
3, Surface I shows the tradeoff between aerodynamic 
performances. The wings near Surface I have 
impractically large aspect ratios. The planform shapes 
of the extreme Pareto solutions that minimize the 
respective objective functions appear physically 
reasonable as shown in Fig. 4. A wing with the minimal 
transonic cruising drag has a less leading-edge sweep 
and a large aspect ratio. On the contrary, a wing with 

the lowest supersonic drag coefficient has a large 
leading-edge sweep to remain inside the Mach cone. 
The pitching moment is reduced by lowering the sweep 
angle and the wing chord length. 
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Fig. 1 Wing planform definition 
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Fig. 2. Wing with structured grid in C-H topology 
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Fig. 3 Projection of Pareto solutions into 

two-dimensional plane between transonic and 
supersonic drag coefficients 
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Fig. 4 Planform shapes of the extreme Pareto solutions 

 
 

Figure 3 contains 766 Pareto solutions. However, it 
is difficult to pick up particular solutions unless they 
are extreme solutions as indicated in Fig. 4. To 
visualize the solutions further, all the Pareto solutions 
in Fig. 3 are labeled by the bending and pitching 
moments, respectively, and plotted in Fig. 5. The wings 
near the tradeoff surface between transonic and 
supersonic drag coefficients (tradeoff surface I in Fig. 
3) have impractically large bending moments as shown 
in Fig. 5 (a). The bending moment is closely related to 
both transonic and supersonic drag coefficients. On the 
other hand, the pitching moment has an influence only 
on supersonic drag coefficient as seen in Fig. 5 (b). 
However, these figures only demonstrate a facet of the 
Pareto front. Therefore, the SOM will be introduced in 
the next section. 
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Fig. 5 Projection of Pareto front to supersonic and 
transonic drag tradeoffs. 

 
 

3. SOM 
3.1 Neural Network and SOM 

The SOM [4,5] is a two-dimensional array of 
neurons:  

{ }qp×= mmM L1  

This is illustrated in Fig. 6. One neuron is a vector 
called the codebook vector  

[ ]
niii mm L

1
=m  

This has the same dimension as the input vectors 
(n-dimensional). The neurons are connected to adjacent 
neurons by a neighborhood relation. This dictates the 
topology, or the structure, of the map. Usually, the 
neurons are connected to each other via rectangular or 
hexagonal topology. In Fig. 6 the topological relations 
are shown by lines between the neurons.  

One can also define a distance between the map units 
according to their topology relations. Immediate 
neighbors (the neurons that are adjacent) belong to the 

neighborhood Nc of the neuron mc. The neighborhood 
function should be a decreasing function of time: 

( )tNN cc = . 
The training consists of drawing sample vectors from 

the input data set and “teaching” them to the SOM. The 
teaching consists of choosing a winner unit by means of 
a similarity measure and updating the values of 
codebook vectors in the neighborhood of the winner 
unit. This process is repeated a number of times.  

In one training step, one sample vector is drawn 
randomly from the input data set. This vector is fed to 
all units in the network and a similarity measure is 
calculated between the input data sample and all the 
codebook vectors. The best-matching unit is chosen to 
be the codebook vector with greatest similarity with the 
input sample. The similarity is usually defined by 
means of a distance measure. For example in the case 
of Euclidean distance the best-matching unit is the 
closest neuron to the sample in the input space.  



 
American Institute of Aeronautics and Astronautics, Inc. 

4 

 

 
 

Fig. 6 Different topologies used in the SOM 
 

 
Fig. 7 Updating the best matching unit and its 

neighbors 
 

 
The best-matching unit, usually noted as mc, is the 

codebook vector that matches a given input vector x 
best. It is defined formally as the neuron for which  
 

[ ]i
i

c mxmx −=− min  

 
After finding the best-matching unit, units in the SOM 
are updated. During the update procedure, the 
best-matching unit is updated to be a little closer to the 
sample vector in the input space. The topological 
neighbors of the best-matching unit are also similarly 
updated. This update procedure stretches the 
best-matching unit and its topological neighbors 
towards the sample vector.  

In Fig.7, the update procedure is illustrated. The 
codebook vectors are situated in the crossings of the 
solid lines. The topological relationships of the SOM 
are drawn with lines. The input fed to the network is 
marked by x in the input space. The best-matching unit, 
or the winner neuron is the codebook vector closest to 
the sample, in this example the codebook vector in the 
middle above x. The winner neuron and its topological 
neighbors are updated by moving them a little towards 
the input sample. The neighborhood in this case 
consists of the eight neighboring units in the figure. The 
updated network is shown in the same figure with 

dashed lines. In the following, SOMs were generated in 
the hexagonal topology by using Viscovery® SOMine 
3.0J [6] 
 
3.2 SOM of Objective Function Space 

The Pareto solutions for supersonic wing designs 
obtained in [3] have four design objectives. First, let’s 
project this four-dimensional objective function space 
onto the two-dimensional SOM. Figure 8 shows the 
resulting SOM with seven clusters. For better 
understanding, the typical planform shapes are plotted 
in the figure. Lower right corner of the map 
corresponds to highly swept, high aspect ratio wings 
good for supersonic aerodynamics. Lower left corner 
corresponds to moderate sweep angles good for 
reducing the pitching moment. Upper right corner 
corresponds to small aspect ratios good for reducing the 
bending moment. Upper left corner thus reduces both 
pitching and bending moments.  

Figure 9 shows the same SOM colored by four 
design objective values, aspect ratios and taper ratios. 
Low transonic drag region corresponds to high aspect 
ratio region, which is reasonable for subsonic wings in 
general. Low transonic drag region also corresponds to 
low taper ratio, although the relation appears slightly 
fuzzy. This is also reasonable because a tapered wing 
will likely give a proper elliptic spanwise loading. Low 
supersonic drag region corresponds to high pitching 
moment region. This is primarily because of high 
sweep angles. Low supersonic drag region also 
corresponds to high bending moment region. 
Combination of high sweep angle and high aspect ratio 
results in very large bending moment. These confirm 
that supersonic wing design is highly constrained.  
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Fig. 8 SOM of Pareto solutions in the objective 
function space 
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[CD (transonic)] - planform-A.som
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[CD(supersoic)] - planform-A.som
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Fig. 9 SOM colored by each design objectives, aspect 

ratios and taper ratios 
 
 
3.3 SOM of Design Variable Space 

Design is a process to find a point in the design 
variable space that matches with the given point in the 
objective function space. This is, however, very 
difficult. For example, the present design variable space 
has 72 dimensions. One way of overcoming high 
dimensionality is to group some of design variables 
together. To do so, the cluster analysis based on SOM 
can be applied. 

First, the previous SOM is revised by using small 
clusters in total of 48 as shown in Fig. 10. Then, all the 
design variables are averaged in every cluster, 
respectively. Now each design variable has a codebook 
vector of cluster-averaged values. Finally, a new SOM 
is generated from the cluster-averaged data as shown in 
Fig. 11. 
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Fig. 10 SOM of objective function space with 48 
clusters 
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Fig. 11 SOM of design variable space 
 
 

In Fig. 11, the labels indicate 72 design variables. DV1 
to 6 corresponds to the planform design variables. 
These variables have dominant influence on the wing 
performance. DV1 and 2 determine the span lengths of 
the two wing panels and make a cluster together. DV3 
and 4 correspond to leading-edge sweep angles and 
make another cluster. DV5 and 6 are root-side chord 
lengths.  

DV7 to 26 defines wing camber. Some of these 
variables appear next to the planform variables and this 
is consistent with aerodynamic knowledge that wing 
camber is essential for aerodynamic performance. 
DV27 to 33 determine wing twist.  

DV34 to 72 are design variable for wing thickness. 
These design variables only appear in the map from the 
middle region to right. This corresponds to the wing 
theory where the wing thickness is often ignored. 

Aerodynamic performance of a wing is primarily 
determined by its planform shape, wing camber and 
twist. 

The design variable space with 72 dimensions is 
mapped onto two-dimensional SOM, where 
aerodynamic knowledge can be applied to understand 
the characteristics of the wing design. Although the 
present neural network does not know aerodynamics, 
the resulting SOM is confirmed to perform 
aerodynamic datamining properly.  

 
4. Concluding Remarks 

Self-Organizing Map has been applied to analyze 
766 Pareto solutions obtained from the previous 
four-objective aerodynamic optimization of supersonic 
wings using Evolutionary Algorithms. Three- 
dimensional Pareto front is mapped onto the 
two-dimensional SOM where global tradeoffs are 
successfully visualized. SOM’s colored by objective 
functions, aspect ratios and taper ratios reveal various 
tradeoffs among them. 

Furthermore, from the clusters obtained from the 
SOM, the design variables are mapped onto another 
SOM. This leads to clusters of design variables which 
indicate the relative importance of design variables and 
their interactions. The resulting SOM approximately 
makes clusters of planform, camber, and others 
variables without aerodynamic knowledge. This also 
indicates that SOM is a versatile datamining tool for 
aeronautical engineering. 
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