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Abstract 

In this paper, wing-body configurations for a next 
generation Supersonic Transport are designed by 
means of Multiobjective Evolutionary Algorithms. 
SST wing-body configurations are designed to 
reduce the aerodynamic drag and the sonic boom for 
supersonic flight. To lower the sonic boom strength, 
the present objective function is to satisfy the 
equivalent area distribution for low sonic boom 
proposed by Darden. Wing and fuselage is defined by 
131 design variables and optimized at the same time. 
Structured multiblock grids around SST wing-body 
configuration are generated automatically and an 
Euler solver is used to evaluate the aerodynamic 
performance of SST wing-body configuration. 
Compromised solutions are found as Pareto solutions. 
Although they have a variety of fuselage 
configurations, all of them have a similar wing 
planform due to the imposed constraints. The present 
results imply that a lifting surface should be 
distributed innovatively to match Darden’s 
distribution for low boom. 

 

1. Introduction 

To develop a next generation Supersonic Transport 
(SST), many researches have been performed.1-10 
However, the next generation SST still has many 
technical requirements to be achieved. One of them 
is high aerodynamic efficiency for an economic 
flight, and another is low sonic boom for an 
environmental issue. These demands have tradeoff, 
because the reduction of sonic boom often leads to 
the increase of drag. To satisfy these demands, 
multiobjective (MO) optimization has been 
performed in the present optimization by using 
Multiobjective Genetic Algorithms (MOGAs). 

To identify such tradeoffs in detail, MO 
optimization must be performed. MO optimization 
seeks to optimize the components of a vector-valued 
objective function unlike the single objective 
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optimization. Pareto solutions, which are members of 
the Pareto-optimal set obtained by solving MO 
problems, represent tradeoffs among multiple 
objectives. Since an application of Evolutionary 
Algorithms (EAs) to MO problem has many 
advantages, such methods have been increasingly 
used in aerodynamic optimization problems.9-12 

MOGAs can sample multiple Pareto solutions 
efficiently and effectively. Since GAs seek optimal 
solutions in parallel using a population of design 
candidates, MOGAs can identify multiple Pareto 
solutions at the same time without specifying weights 
between objectives. Objective functions can be 
evaluated by the existing CFD solver without any 
modification.  

National Aerospace Laboratory of Japan (NAL) 
designed a scaled supersonic experimental airplane 
for NEXST-I project.3 The plane is composed of 
fuselage, wing and tail. The wing is designed to 
achieve Natural Laminar Flow over the wing and the 
fuselage is designed based on the area rule. The 
resulting wing-body configuration has good 
aerodynamic performance. To account for the low 
boom, the fuselage is then modified to have the 
nonsymmetric cross section for NEXST-II.6 NAL 
also have a SST-CFD Workshop every two years. At 
3rd SST-CFD-Workshop in 2001, a design 
competition of SST was held. The present 
optimization is based on the assignments used there. 
The objective is to improve L/D, and an optional 
objective is to reduce sonic boom under given 
constraints. 

In our previous research, the isolated wing shape 
was designed.10 The aircraft was assumed to cruise at 
a supersonic speed only over the sea and to cruise at 
a transonic speed over the land to avoid sonic boom 
generation over the population area. This means the 
important design objectives are not only to improve a 
supersonic cruise performance but also to improve a 
transonic one. Then both aerodynamic drags were 
minimized under lift constraints, and the bending 
moment at the wing root was also minimized to 
prevent all the Pareto solutions having impractically 
large aspect ratios. In addition, the minimization of a 
pitching moment was introduced as the fourth 
objective function to reduce the pitching moment 
associated with a highly swept wing. A 
Navier-Stokes solver was used to evaluate the wing 
performance at both supersonic and transonic 
conditions. In the wing design optimization, 
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planform shapes, camber, thickness distributions and 
twist distributions were parameterized by 72 design 
variables. The resulting Pareto solutions were 
analyzed and compared with NAL’s design.  

Based on the wing design system mentioned above, 
an aerodynamic optimization system for SST 
wing-body configuration is developed in this 
research. To satisfy severe tradeoff between high 
aerodynamic performance and low sonic boom, the 
present objectives are to reduce CD at a fixed CL as 
well as to satisfy the equivalent area distribution for 
low sonic boom proposed by Darden.13 Wing shape 
and fuselage configuration are defined in total of 131 
design variables and are optimized at the same time. 
The wing definition is almost same as the previous 
wing optimization. 55 design variables are used to 
define nonsymmetric fuselage configuration. Four 
design variables represent the wing lofting. The 
multiblock grid approach is employed for 
aerodynamic evaluation. The junction line between 
wing and fuselage will be extracted to generate 
unstructured surface grid. Multiblock grids around 
SST wing-body configuration are then generated 
automatically based on the transfinite interpolation 
(TFI) method.14 Multiblock Euler calculation is used 
to evaluate aerodynamic performance.15 Master-slave 
type parallelization was performed to reduce the 
large computational time of each CFD evaluation in 
the optimization process. 

 

2. Evolutionary Optimization 

EAs, in particular GAs, are based on the theory of 
evolution, where a biological population evolves 
over generations to adapt to an environment by 
selection, crossover and mutation. In design 
optimization problems, fitness, individual and genes 
correspond to an objective function, design candidate 
and design variables, respectively. Figure 1 shows 
the common flowchart of GAs. 

 

 

Evaluation Termination 

Selection 

Initial population 

Crossover 

Mutation 

 
Fig. 1 Flowchart of GAs 

2.1 Multiobjective GAs (MOGAs) 

GAs search from multiple points in the design 
space simultaneously and stochastically, instead of 
moving from a single point deterministically like 
gradient-based methods. This feature prevents design 
candidates from settling in local optimum. Moreover, 
GAs do not require computing gradients of the 
objective function. These characteristics lead to 
following three advantages of GAs: 1, GAs have 
capability of finding global optimal solutions. 2, GAs 
can be processed in parallel. 3, High fidelity CFD 
codes can easily be adapted to GAs without any 
modification.  

GAs have been extended to solve MO problems 
successfully.16,17 GAs use a population to seek 
optimal solutions in parallel. This feature can be 
extended to seek Pareto solutions in parallel without 
specifying weights between the objective functions. 
The resultant Pareto solutions represent global 
tradeoffs. Therefore, MOGAs are quite unique and 
attractive methods to solve MO problems. 

2.2 Real-Coded MOGAs 

Traditionally, GAs use binary representation of 
design variables. For real function optimizations like 
the present aerodynamic optimization, however, it is 
more straightforward to use real numbers. Thus, the 
floating-point representation is used here. 

Initial population is generated randomly. To 
prevent the large waste time of Euler computation, 
all individuals are generated so as to satisfy the 
constraints. If a candidate does not satisfy the 
constraints with 1% tolerance, a new candidate is 
generated again until it satisfies the constraints. 

Selection is based on Fonseca’s Pareto ranking 
method and fitness sharing.16 Each individual is 
assigned to its rank according to the number of 
individuals that dominate it. A standard fitness 
sharing function is used to maintain the diversity of 
the population. To find the Pareto solutions more 
effectively, the so-called best-N selection18 is also 
coupled with. Finally, population of parents can be 
selected by Stochastic Universal Sampling (SUS) 
method based on fitness value calculated above.  

Blended crossover (BLX-α)17 described below is 
adopted. This operator generates children on a 
segment defined by two parents and a user specified 
parameter α.  

Child1 = γ⋅Parent1 + (1-γ)⋅Parent2 
Child2 = (1-γ)⋅Parent1 + γ⋅Parent2 
γ = (1 + 2α)⋅ran1 - α                (1) 

where Child1,2 and Parent1,2 denote encoded design 
variables of the children (members of the new 
population) and parents (a mated pair of the old 
generation), respectively. Uniform random number 
ran1 is defined in [0,1]. To prevent constraint 
violation, parameter α is set to 0.0 during the present 
optimization. Polynomial mutation17 is adopted as 
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mutation method. The disturbance is added to a new 
design variable at a mutation rate of 10%. If the 
mutation occurs, new design variable xi’ are obtained 
as 

xi’ = xi + (xUB,i – xLB,i)⋅δi         (2) 

where xi is original design variable, xUB,i, xLB,i are 
upper and lower boundaries of the design variable, 
respectively. Parameter δi is calculated based on the 
polynomial probability distribution. 

δi = (2⋅ran2)1/(η+1) – 1      (ran2 < 0.5) 
        =1– [2⋅ (1-ran2)]1/(η+1)   (ran2 ≥ 0.5)  (3) 
where ran2 is a uniform random number in [0,1]. A 
value of η decides a perturbation size of mutation 
and is set to 5.0. If a new candidate does not satisfy 
the constraints with the tolerance of 1%, it is 
generated again to prevent the waste time of 
evaluation. 
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Fig. 2 Flowchart of present real-coded MOGAs 
 

2.3 Master-Slave Type Parallelization 

In general, MOGA with aerodynamic evaluation 
requires large computational time. Taking advantage 
of the characteristics of EAs for the reduction of 
computational time, the master-slave approach was 
taken for parallel processing of MOGAs on SGI 
ORIGIN2000 at the Institute of Fluid Science, 
Tohoku University. The master PE manages MOGA, 
while the slave PE’s compute the multiblock Euler 
code for each individual. The population size was set 
to 64 so that the process was parallelized with 32-64 
PE’s depending on the availability. It should be noted 
that the parallelization was almost 100% because of 
the Euler computations dominated the CPU time.  

3. Design Optimization System 

3.1 NAL Design Contest 

The present optimization is based on NAL’s 
assignment. Design objective is to improve L/D at 
Mach number of 2.0 with a fixed CL of 0.1. An 
optional objective is to reduce the sonic boom at 
Mach number of 1.6 with a fixed CL of 0.125. Design 
specification of the present SST wing-body 
configuration is described in Table 1. The constraints 
are given based on the conceptual design for SST. 

 
Table 1 Target SST wing-body specification 

DESIGN OBJECTIVE: 
Reduction of drag (M2.0) 

DESIGN SPECIFICATION: 
Body length ≈ 300 ft 
Body volume ≥ 30,000 ft3 
Minimum diameter ≥ 11.8 ft(0.23≤x/L≤0.70) 
Wing area ≥ 9,000 ft2 
Wing volume ≥ 16,800 ft3 

Maximize t/c (extended root) ≥ 4% 
           (other section) ≥ 3% 
Taper ratio ≈ 0.10 
T.E. sweep angle (outboard) ≤ 30.0° 
Average structural sweep angle ≤ 48.0° 

OPTION:         
Low boom configuration (M1.6) 

 

3.2 Problem Definition 

In this study, SST wing-body configurations are 
designed to improve the aerodynamic performance 
and to lower the sonic boom strength. Therefore, 
design objectives are to reduce CD at Mach number 
2.0 at a fixed CL (=0.10) and to match Darden’s 
equivalent area distribution that can achieve low 
sonic boom. To evaluate aerodynamic performances, 
aerodynamic evaluation has to be automatically 
performed for a given SST wing-body configuration. 
Therefore, a multiblock Euler solver is used in the 
present optimization, and figure 3 shows the 
flowchart of automated CFD evaluation from the 
given design variables. Geometries are at first 
determined based on the parameters and structured 
grids are then constructed around those 
configurations. Finally, Euler calculations are done 
for obtaining aerodynamic performances. Figure 4 
shows the 30 multiblock grids around SST 
wing-body configuration. For the evaluation of sonic 
boom strength, an equivalent area distribution is 
adopted. The equivalent area distribution (Ae(t)) can 
be calculated by the summation of equivalent cross 
sectional distribution (A(t)) and lift distribution 
(B(t))as shown in Fig. 5. Figure 5 also shows 
Darden’s equivalent area distribution for 300 ft 
fuselage SST at Mach number 1.6 at CL = 0.125. 



 
American Institute of Aeronautics and Astronautics 

4 

Constraints are also used in the optimization. As 
body length and wing area is fixed to 300 ft and 
9,000 ft2, respectively, body volume, minimum 
diameter of body and wing volume must be greater 
than the values in Table 1. The other constraints are 
implemented as design variables.  

Finally, the present SST wing-body design problem 
has two objective functions of minimization, three 
constraints and 131 design variables, and is 
optimized by real-coded MOGAs.  

 

 Geometry Definition 

Grid Generation 

Determination of multiblock 
 boundaries 

Extraction of junction line 

Surface grid generation for  
SST wing-body configuration 

Volume grid generation 

Aerodynamic Evaluation 

Multiblock Euler solver 

Geometry generation of 
wing and fuselage separately 

Surface division  

 
Fig. 4 Flowchart of automated CFD evaluation 

 
 

 
Fig. 5 30 multiblocks around SST wing-body 
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and designed geometry 

3.3 Geometry Definition 

Design variables, which determine the shape of 
wing-body configurations here, are composed of 
three groups: wing shape, fuselage configuration and 
wing lofting. Design variables for the wing shape is 
categorized to planform, warp shape and thickness 
distribution. The warp shape is composed of camber 
and twist distributions. Figure 7 shows the definition 
of the planform shape based on 6 design variables: 
inboard and outboard spanwise lengths, chordwise 
lengths at kink and tip, inboard average structural 
sweepback angle and outboard trailing-edge 
sweepback angle. Bézier surfaces and B-Spline are 
used to represent camber, twist and thickness 
distributions.10 Fuselage configuration is defined by a 
Bézier surface with 37 polygons to represent 
complex non-axisymmetric configuration. Five 
design sections in the x-direction are used, where 
seven polygons are defined at each section as shown 
in Fig. 8. 37 polygons correspond to 55 design 
variables after imposing geometric constraints to the 
fuselage. Four design variables are used for the wing 
lofting that indicates how to combine wing and 
fuselage. Design variables are incidence, location of 
extended wing root and dihedral as shown in Fig. 9. 
The total number of design variables is 131. 
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Fig. 7 Planform shape definition 
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(b) Definition of polygons at each section 

Fig. 8 Fuselage definition 
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Fig. 9 Wing lofting definition 
 

3.4 Grid Generation 

To generate a surface grid, a junction line between 
wing and fuselage has to be extracted efficiently. For 
this purpose, structured grids for wing and fuselage 
are separately generated at first (Fig. 10 (a)). The 
grid lines on fuselage surface that intersect the wing 
surface are then searched efficiently by Lawson’s 
search,19 resulting the junction line (Fig. 10 (b)). 
According to the junction line, eight surface patches 
on the wing-body configuration are determined for 
the generation of multiblock grids (Fig. 10 (c)).   

From the surface patches determined above, block 
boundaries are easily defined for the volume grid 
generation. Figure 10 (d) shows the generated surface 
grid on wing and fuselage, respectively. Finally, 
volume grid can be generated by TFI method. Figure 
5 shows the resulting 30 block grids around the SST 
wing-body configuration. Figure 12 shows sample 
wing-body configurations and the corresponding 
surface grids. 

 

 
(a) Surface grid for wing and fuselage 

 
(b) Junction line between wing and fuselage 

 
(c) Division of wing-body configuration 

 

(d) Re-generated surface grid for wing and fuselage 

Fig. 10 Generation of surface grid on SST wing-body 
configuration 

 
 

 

Fig. 11 Sample wing-body configurations  
with surface grids 
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3.5 Aerodynamic Evaluation 

For the present aerodynamic evaluation, 
multiblock Euler calculation15 is performed. This 
Euler solver employs total-variation-diminishing type 
upwind differencing and the lower-upper factored 
symmetric Gauss-Seidel (LU-SGS) scheme20. To 
maintain lift coefficients constant, the angle of attack 
is predicted by using CLα obtained from the finite 
difference. Thus, three Euler computations are 
performed per evaluation. It requires nearly six hours 
for one evaluation using a single PE of ORIGN2000. 

 

4. Optimization Results 

4.1 CASE I Design Results 

The present optimization was performed for 20 
generations and the resulting non-dominated 
solutions were considered as Pareto solutions. In Fig. 
10, non-dominated solutions in the initial, 10th, and 
20th populations are shown. In the figure, the vertical 
axis is the difference of equivalent area distribution 
from Darden’s distribution. If the difference is small, 
then it indicates a theoretically low boom design. The 
Pareto front obtained from the 20th population 
represents the tradeoff between drag and boom. 
Several wing-body configurations of the Pareto 
solutions are also presented in the figure. In case of 
the initial designs, comparatively various kinds of 
wing-body configuration were generated. On the 
other hand, the final Pareto solutions have similar 
wing planforms. 

Extreme Pareto solutions are chosen for 
comparison: the lowest drag (LD-I) and the lowest 
boom (LB-I). Table 2 shows their aerodynamic 
performances and design features. In addition, their 
planforms and the side views of their fuselages are 
shown in Fig. 13. Their planform shapes appear 
similar because the constraint on the wing volume is 
very severe and thus the planform is not allowed to 
change drastically. On the contrary, fuselage shapes 
are found to have a variety. As shown in Fig. 13, 
LB-I has similar distribution to Darden’s especially 
in the fore body by getting thicker. In contrast, 
LD-I’s distribution is totally different from Darden’s 
and the fuselage shape appears thinner.  

Although LD-I has the highest L/D, its value does 
not appear excellent. To improve L/D more, fuselage 
configurations must be more slender than those of the 
present solutions. This indicates that MOGAs have to 
search solutions near the geometric constraints on the 
fuselage. However, the present MOGAs did not focus 
in such a region, and the solutions tend to have a 
thick fuselage.  

 
 
 
 

Table 2 Aerodynamic performances and design 
specifications of selected Pareto solutions (Case I) 

 LD-I LB-I Constraints 
L/D 11.1 8.1  

Difference of Ae(t) 6569 3428  
Body volume (ft3) 43798 62085 30000 
Min. diameter (ft) 11.97 15.74 11.8 
Wing volume (ft3) 18397 17441 16800 
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Fig. 12 Non-dominated solutions of initial, 10th and 
20th generation with some wing-body configurations 
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Fig. 13 Wing-body shapes and equivalent area 
distributions of selected Pareto solutions 

4.2 CASE II Design Results  

From a result of the optimization in Sec.4.1, 
fuselage configuration has to be thin to obtain high 
aerodynamic performance. Therefore, the upper 
bound is imposed onto the fuselage volume as 
described in Table 3. 

Similar aerodynamic optimization with a new 
constraint was performed for 20 generations. In Fig. 
14, non-dominated solutions in the initial, 10th, and 
20th populations are shown. Several wing-body 
configurations of the Pareto solutions are also 
presented in the figure. In this optimization, from the 
beginning, those designs have better aerodynamic 
performances than Case I optimization. All the wing 
shapes of non-dominated initial designs are similar. 
For the final Pareto solutions, planform shapes are 
also quite similar. The drag coefficients are improved 
over 10 counts compared with those of CASE I. 

Extreme Pareto solutions are chosen for 
comparison: the lowest drag (LD-II) and the lowest 
boom (LB-II). Table 4 shows their aerodynamic 
performances and design features. In addition, their 
planforms and the side views of their fuselages are 
shown in Fig. 15. Their planform and fuselage 
configurations appear similar. Only the difference is 
the thickness distribution near the nose of fuselage. It 
results in a difference of low drag or low boom. 
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Fig. 14 Non-dominated solutions of initial, 10th and 
20th generation with some wing-body configurations 
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Fig.15 Wing-body shapes and equivalent area 
distributions of selected Pareto solutions 

 
Table 3 Constraints for Case II 

DESIGN CONSTRAINTS:  
40,000ft3 ≥  Body volume ≥  30,000 ft3 

Minimum diameter ≥  11.8 ft (0.23 ≤ x/L ≤ 0.70) 
Wing volume ≥  16,800 ft3 

 

Table 4 Aerodynamic performances and design 
specifications of selected Pareto solutions (Case II) 

 LD-II LB-II Constraints 
L/D 13.10 11.24  

Difference of Ae(t) 5427 4124  
Body volume (ft3) 34379 37688 30000 
Min. diameter (ft) 11.75 12.29 11.8 
Wing volume (ft3) 19337 20889 16800 

 

4.3 Comparison of Pareto Solutions 

Both Pareto solutions (Case I and II) are discussed 
in this section. Pareto solutions (Case I and II) are 
shown in Fig. 16. It is easily found that LD-I and 
LB-II have similar drag coefficients but a large 
difference in the equivalent area distribution. The 
shape difference is only the distributions of fuselage 
thickness. From the nose of the fuselage to the 
trailing edge of the wing is considered for the 
equivalent area distribution in the present 
optimization. Therefore, a more detailed analysis 
may be required to obtain accurate sonic boom in 
future. 

Solution LB-I has the increased fuselage volume 
for the low boom at the cost of the increased drag. It 

indicates that, if the fuselage volume is constrained 
to the original size to maintain its aerodynamic 
efficiency, there is no way to match Darden’s 
distribution under the present constraints on the wing. 
The present result therefore suggests that the lifting 
surface should be distributed along the fuselage for 
low boom and low drag. The low boom supersonic 
aircraft should have an innovative planform shape. 
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Fig.16 Comparison of Pareto solutions  
between Case I and II. 

 

5. Conclusion 

Design optimization for SST wing-body 
configurations was performed based on NAL design 
competition. Design objectives were to improve 
aerodynamic performance at Mach number 2.0 and to 
reduce sonic boom at Mach number 1.6. These two 
objectives were optimized by using MOGAs. To 
evaluate aerodynamic performance, an Euler 
calculation was used. The sonic boom was evaluated 
according to Darden’s distribution. Each evaluation 
was parallelized on SGI ORIGIN2000 at the Institute 
of Fluid Science, Tohoku University. 

Multiblock grid was used to treat a complex 
geometry of SST wing-body configuration. 
Geometry is defined by in total of 131 design 
variables. Based on these design variables, 
multiblock grids were automatically generated 
around SST wing-body configuration by Lawson’s 
search and TFI method. 

As a result of Case I, 8 Pareto solutions were 
obtained. Extreme Pareto solutions were chosen for 
comparison. The design of lowest boom has a thick 
fuselage to match Darden’s distribution. On the other 
hand, excellent improvement in L/D was not 
obtained for lowest drag design because MOGAs 
were not able to search near the constraint boundary 
and all designs have thick fuselage.  

To improve L/D, the upper bound for fuselage 
volume was introduced in Case II. Aerodynamic 
performances were improved successfully; however, 
a drastic improvement in L/D was not obtained due 
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to the severe constraints. 
Although the resulting Pareto solutions in both 

cases have a variety of fuselage configurations, they 
have a similar planform for wing shapes. Because a 
similar wing planform leads to a similar lift 
distribution, the fore body has to become thick to 
match Darden’s distribution for low boom. Thus, the 
low boom optimization simply resulted in a thick 
fuselage with poor aerodynamic performance. The 
present result suggests that a lifting surface should be 
distributed innovatively to reduce both boom and 
drag, which will result in unconventional 
wing-fuselage configurations. In addition, to improve 
the aerodynamic performance further, MOGAs have 
to focus at the boundary of geometric constraints 
better. The constraint handling in MOGA remains for 
future research. 
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