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INTRODUCTION 

 CFD techniques  have been improved for higher 
reliability and higher accuracy recently. As a result, 
CFD has been integrated into aerodynamic optimization. 
Automated aerodynamic optimization is expected to 
reduce time and cost of aircraft design.  

 In the aerodynamic optimization, a gradient-based 
method and an Evolutionary Algorithm (EA) are often 
used [1,2]. In the gradient-based method, sensitivity 
derivatives of the objective function at the initial design 
point is calculated and the next design point is 
determined in the direction of the gradient. This process 
is continued until a local extreme is found. Gradient-
based methods can generally obtain an optimal solution 
with a small number of evaluations. Since only a local 
optimal solution is obtained by the gradient-based 
method, many different initial points should be 
considered to find a global optimal solution. In addition, 
sensitivity derivatives must be calculated for each 
design variable. To reduce the number of CFD 
evaluations to obtain the sensitivity derivatives, 
Jameson et al. proposed an adjoint approach [3]. 

 In contrast to the gradient-based method, EA is a 
stochastic method based on the theory of evolution. In 
this method, only the objective-function value is used to 
find an optimal solution and it has a possibility of 
obtaining a global optimal solution. One of the 
disadvantages is large computational time due to 
population-based search, but it can be reduced by 
parallel computing. 

 EA and the adjoint method are very promising 
approaches for aerodynamic optimization. However, 
there are few reports available for performance 
comparisons of these methods because they fall into 
completely different methodologies and because code 
developments are not easy especially for the adjoint 
method. This paper provides unique comparison results 
of these methods applied to aerodynamic optimization 
of a wing-body configuration for a supersonic transport 
(SST). The SST configuration was designed by 

National Aerospace Laboratory (NAL) of Japan for the 
scaled supersonic experimental airplane project [4]. The 
present design objective is to reduce the drag 
coefficient at supersonic cruising speed using an 
unstructured Euler solver.   

ADJOINT METHOD 

 The discrete residual vector of the nonlinear flow 
equations is null for a converged flow field solution of 
steady problems, which can be written symbolically as 

[ ] 0,)(,)( =ß  ß X ßQR i  (1) 

where Q is a flow variable vector, X is a grid position 
vector, β  is a vector of design variables. Eq.(1) is 
directly differentiated with respect to β  via chain rule to 
yield the following equation. 
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The total derivative of the objective function F is given 
as follows. 
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One can introduce an adjoint variable vector and 
combine Eq.(2) and (3). Coefficients of a flow-variable 
sensitivity vector form the following adjoint equation. 
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If one finds the adjoint variable vector λ  which satisfies 
the above adjoint equation, one can obtain the 
sensitivity derivative of F with respect to β without any 
information about the flow variable sensitivity vector 

}{ ßQ dd . This makes the computational cost for the 
sensitivity analysis independent of the number of 



design variables. Equation (3) finally becomes to the 
following form,  
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EVOLUTIONARY ALGORITHM 

 Figure 1 shows the flowchart of EA used in the 
present study. The following describes genetic 
operators employed here in brief. The floating-point 
representation is used in this study. Selection is based 
on the ranking method [5], and each individual is 
assigned to its rank according to the fitness value. The 
following shows the selection probability. 

( ) 11 −−⋅= rankccprob  (6) 

Selection probability of rank 1 is represented by c, and 
c is set to 0.8. To accelerate the convergence, the best 
and the second best solutions of each generation are 
preserved to the next generation automatically. Blended 
crossover (BLX-α) [6] is adopted. This operator 
generates children on a segment defined by two parents 
and a user specified parameter α . In this optimization, 
α is set to 0.5. The dis turbance is added to new design 
variables at a mutation rate of 10%. If the mutation 
occurs, new design variables are represented as  

Child1 = γ⋅Parent1 + (1−γ)⋅Parent2 + m⋅(ran2−0.5) 

Child2 = (1−γ)⋅Parent1 + γ⋅Parent2 + m⋅(ran3−0.5) 

γ =(1+2α)⋅ran1 − α 

(7) 

where Child1,2  and Parent1,2  denote encoded design 
variables of children (members of the new population) 
and parents (a mated pair of the old generation), 
respectively. The random number ran1,2,3  are uniform 
number in [0,1] and m is set to 10% of the given range 
of each design variable. 
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Fig.1 Flowchart of Evolutionary Algorithm 

PROBLEM DEFINITION 

 The initial design is taken from SST wing-body 
configuration designed by NAL as shown in Fig.2. The 
configuration is composed of wing, body and tail. The 
main wing shape is designed by the inverse method to 
achieve a natural laminar flow on the upper surface of 
the wing. 

 

Fig.2 SST configuration (Initial geometry) 

Design Objective  

 The objective of the present design optimization is 
defined to minimize drag while maintaining a specified 
lift CL

* as  
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where the second term represents the penalty term to 
prevent reducing the drag by simply reducing the lift. 
Supersonic cruising Mach number is 2.0 and the target 
lift coefficient CL* is 0.1. 

Design Variables and Grid Modification  

 In this optimization problem, the main wing shape 
of the SST configuration is optimized with the fixed 
wing planform. The wing section geometry is modified 
adding a linear combination of Hicks and Henne shape 
functions (Fig.3). 20 Hicks-Henne design variables and 
one twist angle per a design section are used at five 
design sections in the spanwise direction as shown in 
Fig.4. To prevent thinner wing thickness to reduce the 
drag coefficient, modified thickness must be grater than 
the initial one at three chordwise locations (5%, 50%, 
80%) for each design section. This corresponds to the 
following constraint. 

gi = Th i,design − Th i,initial ≤ 0 (9) 

where Th i,design  is the modified thickness at the i-th 
constraint position and Th i,initial is the original thickness 
at the same position. Then the total number of design 
variables and constraints are 105 and 15, respectively. 
Upper and lower bounds of design variables  and 
constraints are described in Table 1 where β  is a twist 
angle. 



 For the movement of interior grid points with a 
perturbed surface grid, the elliptic partial differential 
equation method [7] is used. The resulting adjoint 
solver costs a few times more than the Euler flow solver. 

Table 1 Definition of design variables 

Airfoil Twist Angle Definition 
Location 

 
Number Constraints Constraints 

η Upper Lower βL ≤ βi ≤ βU 
Number βL ≤ βi ≤ βU 

0.215 1−10 11−20 101 
0.307 21−30 31−40 102 
0.400 41−50 51−60 103 
0.505 61−70 71−80 104 
0.753 81−90 91−100 

−1.0 ≤ βi ≤ 1.0 

105 

−5.0 ≤ β i ≤ 5.0  
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Fig.3 10 Hicks-Henne shape functions 

 

η = 0.753 

η = 0.505 
η = 0.400 
η = 0.307 
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η = 0.122 

η = 1.0 

Fig.4 Planform shape and design sections (η=0.215, 
0.307,0.400, 0.505, 0.753) for the main wing 

Grid Sensitivity  

 The grid sensitivity for the vector C in Eq.(5) has 
to be evaluated with respect to each geometric design 
variable by differentiating the interior grid movement. 
Since this requires almost the same computational cost 
with the grid movement procedure, the total 
computational burden would be substantial as  the 
number of design variables increases. 

 Figure 5 compares the derivatives of the objective 
function obtained with and without the interior grid 
sensitivity information for the wing-body configuration. 
Since both plots are identical, only the surface grid 
sensitivities will be used in the following optimization. 
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Fig.5 Comparison of sensitivity derivatives 
with/without interior grid sensitivities 

Aerodynamic Evaluation 

 The three-dimensional, unstructured Euler code is 
used to evaluate aerodynamic performance of a wing-
body configuration at a supersonic condition. The Euler 
equations are solved by a finite-volume cell-vertex 
scheme[8]. Figure 6 shows the NAL SST configuration 
with the unstructured grid, where the number of nodes 
and cells are 30,000 and 1,700,000, respectively. 

 By using the simple master(EA)-slave(CFD) 
approach, the present optimization was parallelized on 
SGI ORIGIN2000 at the Institute of Fluid Science, 
Tohoku University. The population size used in this 
study was set to 64 so that the process was parallelized 
with 64 PEs. 

 

Fig.6 SST wing-body configuration  
with unstructured grid 



RESULTS 

Adjoint Result  

 SQP method [9] was adopted as a design optimizer 
and the adjoint method was used to supply the 
sensitivity derivatives. The initial wing geometry 
shown in Fig.2 was designed for a natural-laminar-flow 
(NLF) wing and it has good aerodynamic performance 
at the design condition. SQP optimization was run for 
three iterations to minimize the objective function while 
satisfying the geometric constraints. As can be seen in 
Table 2, the drag coefficient was reduced by about one 
count retaining the lift coefficient and satisfying the 
wing thickness constraints. Total evaluation numbers of 
Euler and adjoint solvers were nine and three, 
respectively.  

EA Result  

 Three different initial populations were first 
employed for EA. They were generated as follows. 

A. All design variables were randomly generated in 
the design ranges. 

B. 50% of design variables were randomly 
generated in the design ranges and the rest of 
design variables remained null. 

C. 25% of design variables were randomly 
generated in the design ranges and the rest of 
design variables remained null. 

Examples of three initial populations are shown in Fig.7. 
If the resulting design does not satisfy the geometric 
constraints Eq.(9), it is discarded and a new design 
variables are generated. The same procedure was taken 
for crossover and mutation during the evolution. 

 Figure 8 shows the convergence histories starting 
from three populations A, B and C. A solution better 
than the initial design was not obtained from these 
populations in the first 20 generations. The present 
initialization of design variables distributes the 
population all over the feasible region. However, 
because thinner wings generally have lower drag in 
supersonic flows, good wings are expected to be found 
at the lower bound of the wing thickness within the 
feasible region. This kind of prior knowledge about the 
design space should be incorporated into EA for 
efficient search. 

 The idea of island model [10] was then introduced 
to improve EA’s search performance. Emigrants were 
selected from the final generations of three populations 
A, B and C. They are considered as a new initial 
population and the optimization process was restarted. 
The new population was evolved for 35 generations. 
The convergence history is summarized in the plots of 

minimum, average and maximum objective functions as 
shown in Fig.9. In the figure, objective function values 
of the initial geometry and the adjoint design are also 
indicated. In this optimization, the best individual 
outperforms the initial and adjoint designs at 5 and 23 
generations, respectively. Table 2 summarizes their 
aerodynamic performances. EA design performs 
slightly better than the adjoint design although EA 
requires far more computational time. 

Comparison of design results  

 Figure 10 shows a comparison of airfoil shapes 
among the initial geometry, adjoint design and EA. In 
this figure, camber lines are found quite different from 
each other. In addition, EA design is much thinner at 
20% chordwise location than the others. EA takes the 
advantage of the loose problem definition, not only 
satisfying the constraints. This may cause a problem 
when placing a wing box for structural integrity.  
Designers have to define their need precisely and they 
should doublecheck the optimization result carefully. 

 In Fig.11, surface pressure distributions are plotted 
along with the corresponding airfoil shapes. Although 
the two optimisation approaches are completely 
different, both configurations are found to utilize the 
leading-edge suction. This is because of the inviscid 
flow assumption. The original design, in contrast, 
intentionally avoided the leading-edge suction to 
achieve favorable pressure gradient for the NLF wing. 

 Finally, the distribution of design variables are 
compared in Fig.12. Design variables are plotted at 
every spanwise section. For the adjoint result, design 
variables appear periodic in the spanwise direction. 
This indicates that the adjoint method cannot utilize the 
precise geometry representation using a large number 
of design variables because it is limited to a local search. 
On the other hand, EA shows more diversity in the 
distribution. Since it outperforms the adjoint method, it 
is confirmed to take advantage of having a large 
number of design variables as a global search.  

 

Table 2 Comparison of aerodynamic performances 

 Initial Adjoint GA 
CL 0.099962 0.100154 (+0.19%) 0.099978 (+0.02%) 
CD 0.006346 0.006267 (+1.24%) 0.006226 (+1.88%) 
L/D 15.75232 15.98111 (+1.45%) 16.05708 (+1.94%) 
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Fig.7 Example of initial populations 
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Fig.8 Comparison of convergence histories of minimum 
objective function values starting from three initial 

populations A, B and C 
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Fig.9 Convergence history of emigrant population 
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Fig.10 Comparison of airfoil shapes at two spanwise 
sections 

 

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4 -0.02

0.00

0.02

0.04

0.06

0.08

0.10

0 0.2 0.4 0.6 0.8 1

C
P
 (Initial)

C
P
 (Adjoint)

C
P
 (GA)

Airfoil (Initial)
Airfoil (Adjoint)
Airfoil (GA)

C
P

t/c

x/c  
(a) η=0.307 

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4 -0.02

0.00

0.02

0.04

0.06

0.08

0.10

0 0.2 0.4 0.6 0.8 1

C
P
 (Initial)

C
P
 (Adjoint)

C
P
 (GA)

Airfoil (Initial)
Airfoil (Design)
Airfoil (GA)

C
P

t/c

x/c  
(b) η=0.400 

Fig.11 Comparison of Cp distributions at two spanwise 
sections 
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(a) Adjoint design 
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(b) EA design  

Fig.12 Distribution of design variables at each spanwise 
section 

CONCLUSION 

 In this study, SST wing-body configuration was 
optimized by two different approaches: the adjoint 
method and EA. The unstructured Euler solver was 
employed for CFD evaluations. The adjoint method 
achieved about one count of drag reduction with a 
relatively small computational cost. On the other hand, 
EA was able to reduce more drag counts than the 
adjoint method, but it also required far more 
computational time. Both designs were found to utilize 
the leading-edge suction.  

 Detailed comparison of the resulting optimal 
designs further revealed the following observations. 
The adjoint method is computationally efficient, but it 
is limited to a local search due to the gradient method. 
The local search cannot fully utilize precise wing 
definitions using a large number of design variables.  

 EA requires enormous computational time, but it 
actually performs a global search, at least better than 
the gradient method. It enables not only to utilize a 
large number of design variables, but also to take 
advantage of loose problem definitions. EA also wastes 

the search for looking at the entire feasible region, even 
when the optimal solution is expected near the 
boundary of the feasible region due to constraints. 
Therefore, the representation of the optimization 
problem has to be carefully determined for EA.   

ACKNOWLEDGEMENT 

The present computation was carried out on SGI 
ORIGINA2000 in the Institute of Fluid Science, 
Tohoku University. This research was partly funded by 
Japanese Government’s Grants-in-AID for Scientific 
Research, No. 10305071. The second author’s research 
has been partly supported by Bombardier has been 
partly supported by Bombardier Aerospace, Toronto, 
Canada. The authors would like to thank National 
Aerospace Laboratory’s SST design Team for 
providing many useful data. 

REFERENCES 

[1] Reuter, J. and Jameson, A., “Aerodynamic Shape 
Optimization of Wing and Wing-Body 
Configuration using Control Theory,” AIAA 95-
0123, 1995. 

[2] Oyama, A., Obayashi, S., Nakahashi, K. and 
Nakanumra, T., “Transonic Wing Optimization 
Using Genetic Algorithm,” AIAA 97-1854, 1997. 

[3] Jameson, A., “Aerodynamic Design via Control 
Theory,” J. of Scientific Computing, 3, pp.233-260, 
1988. 

[4] Sakata, K., “Supersonic Experimental Airplane 
Program in NAL and its CFD-Design Research 
Demand,” 2nd SST-CFD Workshop, pp.53-56, 2000. 

[5] Michalewicz, Z., Genetic Algorithms + Data 
Structure = Evolution Programs, 3rd revised 
edition, Springer-Verlag, Berlin, 1996. 

[6] Eshelman, L. J. and Schaffer, J. D., “Real-coded 
genetic algorithms and interval schemata,” 
Foundations of Genetic Algorithms 2, Morgan 
Kaufmann Publishers, Inc., San Mateo, pp.187-202, 
1993. 

[7] Crumpton, P. I. and Giles, M. B., “Implicit time 
accurate solutions on unstructured dynamic grids,” 
AIAA 95-1671, 1995. 

[8] Sharov, D. and Nakahashi, K., “Reordering of 
Hybrid Unstructured Grids for Lower-Upper 
Symmetric Gauss-Seidel Computations,” AIAA J., 
Vol.36, No.3, pp.484-486, 1998. 

[9] “Design Optimization Tools USERS MANUAL,” 
Vanderplaats, R&W, Inc., Colorado Springs, 1999.  

[10] Loraschi, A., Tettamanzi, A., Tomassini, M. and 
Verda, P., “Distributed genetic algorithms with an 
application to portfolio selection problems,” Proc. 
of the Int. Conf. on Artificial Neural Networks and 
Genetic Algorithms, Springer-Verlag, Wien, 
pp.384-387, 1995.  


