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ABSTRACT

This paper describes the design optimization of a
planform shape for a supersonic transport wing using
Multiple Objective Genetic Algorithm. The objective
functions are to minimize the drag for supersonic cruise,
the drag for transonic cruise and the bending moment at
the wing root for supersonic cruise. The planform shape
is defined by six design variables. An Euler flow code is
used to evaluate the supersonic drag, and a potential
flow code is used to evaluate the transonic drag. To
reduce the total computational time, flow calculations
were parallelized on NEC SX-4 computer using 32 PE's.
Physically reasonable Pareto solutions were obtained
from the present optimization. One of the present Pareto
solutions is found to outperform the existing wing
design in all design objectives.

INTRODUCTION

Commercial aviation has grown remarkably with the
development of the world economy during a half-
century. This growth of air traffic is projected to
continue well into the 21st century with increase
demands for more efficient aircraft. As a solution to
such demands, the next generation supersonic transport
has been considered worldwide [1].

Concorde is the only commercially operating, first
generation supersonic transport. Although it can fly at
speed of Mach 2.0, most of airline companies did not
purchase it for their services. There are three major
deficiencies regarding Concorde. One is its relatively
high operating cost. Second is the community noise at
the airport for taking off and landing. The third is the
sonic boom at the supersonic cruise. The first two
deficiencies are ascribed to its low lift-to-drag ratio. To
generate enough lift necessary for the flight, Concorde
has to burn more fuel and thus make more noise. To
improve the lift-to-drag ratio of the next generation
supersonic transport, aerodynamic optimization of the
aircraft configuration has been investigated.

The third problem, however, has a fundamental
difficulty since sonic-boom minimization is in conflict

with the drag minimization. On the other hand,
acceptability of supersonic transport is very sensitive to
the sonic boom over populated areas. Thus, one of the
design choices is to limit supersonic flight over sea and
to have transonic flight over land. Although such
decision excludes the sonic boom from the design
consideration, the design is now faced with transonic
performance of the aircraft.

This paper considers multipoint aerodynamic
optimization of a wing planform shape for supersonic
aircraft both at supersonic cruise condition and at
transonic cruise condition. Aerodynamic drag will be
minimized at both cruise conditions under lift
constraints. Aerodynamic optimization of the wing
planform, however, drives the wing to have an
impracticably large aspect ratio. Therefore,
minimization of the wing root bending moment is added
as the third design objective.

The present multipoint design problem can be
regarded as multiobjective (MO) optimization. Solutions
to MO problems are often computed by combining
multiple criteria into a single criterion according to
some utility function. In many cases, however, the
utility function is not well known prior to the
optimization process. The whole problem should then be
treated with non-commensurable objectives. MO
optimization seeks to optimize the components of a
vector-valued objective function. Unlike single
objective optimization, the solution to this problem is
not a single point, but a family of points known as the
Pareto-optimal set.

By maintaining a population of solutions, Genetic
Algorithms (GAs) can search for many Pareto-optimal
solutions in parallel. This characteristic makes GAs very
attractive for solving MO problems. As a solver for MO
problems, the following two features are desired: 1) the
solutions obtained are Pareto-optimal and 2) they are
uniformly sampled from the Pareto-optimal set. To
achieve these, MOGAs have successfully been
introduced by Fonseca and Fleming [2].

Furthermore, it was shown that the so-called best-N
selection helps to find the extreme Pareto solutions [3].
The best-N selection picks up the best N individuals



among N parents and N children for the next generation
similar to CHC [4]. The extreme Pareto solutions are the
optimal solutions of the single objectives. By examining
the extreme Pareto solutions, quality of Pareto solutions
can be measured. The present MO problem will be
solved by using MOGA coupled with the best-N
selection.

APPROACH

In GAs, the natural parameter set of the optimization
problem is coded as a finite-length string. Traditionally,
GAs use binary numbers to represent such strings: a
string has a finite length and each bit of a string can be
either 0 or 1. For real function optimization, however, it
is more natural to use real numbers. The length of the
real-number string corresponds to the number of design
variables.

Crossover and Mutation
A simple crossover operator for real number strings is
the average crossover [5] which computes the arithmetic
average of two real numbers provided by the mated pair.
In this paper, a weighted average is used as

Child1 = ran1·Parent1 + (1-ran1)·Parent2 (1)
Child2 = (1-ran1)·Parent1 + ran1·Parent2

where Child1,2 and Parent1,2 denote encoded design
variables of the children (members of the new
population) and parents (a mated pair of the old
generation), respectively. The uniform random number
ran1 in [0,1] is regenerated for every design variable.

Mutation takes place at a probability of 20% (when a
random number satisfies ran2 < 0.2) initially and the
rate is going to decline linearly during the evolution.
Equations (1) will then be replaced by

Child1 =
ran1·Parent1 + (1-ran1)·Parent2 + m·(ran3-0.5) (2)

Child2 =
(1-ran1)·Parent1 + ran1·Parent2 + m·(ran3-0.5)

where ran2 and ran3 are also uniform random numbers
in [0,1] and m determines the range of possible
mutation.

Multiobjective Pareto Ranking
To search Pareto-optimal solutions by using MOGA, the
ranking selection method [6] can be extended to identify
the near-Pareto-optimal set within the population of GA.
To do this, the following definitions are used: suppose

ix  and jx  are in the current population and

( )qfff ,,, 21 �=f  is the set of objective functions to be

maximized,

1. ix  is said to be dominated by (or inferior to) jx , if

( )ixf  is partially less than ( )jxf , i.e.,

( ) ( ) ( ) ( ) ( ) ( )jqiqjiji ffffff xxxxxx ≤∧∧≤∧≤ �2211

and ( ) ( )ji xfxf ≠ .

2. ix  is said to be non-dominated if there doesn't exist

any jx  in the population that dominates ix .

Non-dominated solutions within the feasible region in
the objective function space give the Pareto-optimal set.

Let's consider the following optimization:

Maximize: xf =1 , yf =2

Subject to: 122 ≤+ yx  and 1,0 ≤≤ yx

The Pareto front of the present test case becomes a
quarter arc of the circle 122 =+ yx  at 1,0 ≤≤ yx .

Consider an individual ( )ii yx,=x  at generation t (Fig.

1) which is dominated by pit individuals in the current
population. Following [2], its current position in the
individuals' rank can be given by

( ) t
ii pt += 1,rank x  (3)

All non-dominated individuals are assigned rank 1 as
shown in Fig. 1. The fitness values are reassigned
according to rank as an inverse of their rank values.
Then the SUS method [7] takes over with the reassigned
values.
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Fig. 1. Pareto ranking method.



Fitness Sharing
To sample Pareto-optimal solutions from the Pareto-
optimal set uniformly, it is important to maintain genetic
diversity. It is known that the genetic diversity of the
population can be lost due to the stochastic selection
process. This phenomenon is called the random genetic
drift. To avoid such phenomena, the niching method has
been introduced [6].

The model used here is called fitness sharing (FS). A
typical sharing function is given by Goldberg [6]. The
sharing function depends on the distance between
individuals. The distance can be measured with respect
to a metric in either genotypic or phenotypic space. A
genotypic sharing measures the interchromosomal
Hamming distance. A phenotypic sharing can further be
classified into two types. One measures the distance
between the decoded design variables. The other, on the
other hand, measures the distance between the designs'
objective function values. Here, the latter phenotypic
sharing is employed since we seek a global tradeoff
surface in the objective function space.

This scheme introduces new GA parameters, the niche
size σshare. The choice of σshare has a significant impact
on the performance of MOGAs. Fonseca and Fleming
[3] gave a simple estimation of σshare in the objective
function space as
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where N is a population size, q is a dimension of the
objective vector, and Mi and mi are maximum and
minimum values of each objective, respectively. This
formula has been successfully adapted here. Since this
formula is applied at every generation, the resulting
σshare is adaptive to the population during the evolution
process. Niche counts can be consistently incorporated
into the fitness assignment according to rank by using
them to scale individual fitness within each rank.

Multipoint Design Objectives
Flow conditions and lift coefficients considered here are

∞M = 2.0 and CL = 0.1 for supersonic cruise and ∞M =
0.9 and CL = 0.15 for transonic cruise. The primary
objective of the present research is to minimize drag
coefficients both at the supersonic cruise and at the
transonic cruise.

To determine the aerodynamic drag, the entire flow
field has to be solved. The supersonic inviscid drag is
evaluated by using an Euler flow solver [8]. The

transonic inviscid drag is evaluated by using a full
potential flow solver [9]. The lift constraints were
satisfied by adjusting angles of attack. These flow
analyses dominate most of the computational time
required for the optimization. Thus, a simple master-
slave parallelization is employed: MOGA operators are
assigned to a master processor and the flow evaluations
are distributed to slave processors. Calculations were
performed on NEC SX-4 computer at Computer Center
of Tohoku University, using 32 PE's (this corresponds to
one node of SX-4, a quarter of the center machine, and
the node's peak performance is 64 GFLOPS with 8 GB
memory). The population size was thus set to 64.

The preliminary optimization of the present
multipoint design, however, revealed that all Pareto
solutions have impracticably large aspect ratio. This was
typical when the structural constraint was not
considered. To account for the structural integrity, the
third objective is introduced to reduce the bending
moment at the wing root. The bending moment is
evaluated by directly integrating the pressure load at the
supersonic cruise condition.

RESULTS

Design variables are illustrated in Fig. 2 and their ranges
are listed in Table 1. In total of six design variables are
used. A wing area is fixed as required for takeoff and
landing performance. A chord length at the wing tip is
automatically determined due to the given wing area.
An airfoil shape is also frozen to NACA64A0003.
Neither camber nor twist is considered.

Figure 3 shows the resulting Pareto solutions in the
three dimensional objective function space as well as
their two-dimensional projections. The evolution was
stopped after 35 generations since the Pareto front
became almost steady. The total computational time was
roughly 46 hours. Tradeoffs between the objectives can
be identified more easily in the two-dimensional
projections. For example, a Pareto front can be found in
the two-dimensional projection of supersonic versus
transonic drag coefficients. Our preliminary calculation
for minimizing the supersonic and transonic drag
coefficients resulted in a similar Pareto front. However,
all the planform shapes corresponding to this Pareto
front appeared to have impracticably large aspect ratios.
Therefore the bending moment was introduced as the
third design objective. As shown in the other two-
dimensional projections, the minimization of the
bending moment has tradeoffs with minimization of the
aerodynamic drags.

Figure 4 illustrates several planform shapes among



the Pareto solutions. Aerodynamically good solutions
have very large aspect ratios. In an inviscid flow,
aerodynamic drag has two components: the wave drag
and the induced drag. Since the induced drag is
inversely proportional to the aspect ratio of a wing, an
aerodynamically optimized wing should have a large
aspect ratio. On the other hand, the wave drag primarily
relates to the aircraft speed and the leading-edge sweep
angle. As the aircraft flies faster, the sweep angle should
be increased. As shown in the figure, the extreme Pareto
solution corresponding to the minimum supersonic drag
has a much larger sweep angle than the one
corresponding to the minimum transonic drag. Finally,
the solution corresponding to the minimum bending
moment gives a very small aspect ratio. Since the
amount of lift is constrained, a smaller aspect ratio
simply gives a smaller bending moment. These extreme
Pareto solutions appear physically reasonable.

To examine the present optimization result further,
several Pareto solutions are compared with the existing
planform shapes of Concorde and National Aerospace
Laboratory's scaled supersonic experimental airplane
[10] shown in Fig. 5. NAL has developed a series of
aerodynamic designs for their experimental airplane and
this particular planform shape corresponds to their
second design. For the comparison purpose, only the
original planform shapes of those wings were used
while the airfoil shapes were changed to NACA64A003.
In addition, these planform shapes were extended to the
center line of the body. Although Concorde's planform
is beyond the present design range, it is expected to give
a reference for the supersonic drag.

Table 2 summarizes the comparison of their
performances. The present solutions are confirmed to
have the best values in the transonic and supersonic drag
coefficients, respectively. For the bending moment,
Concorde's planform has the smallest value since it has
a much smaller aspect ratio due to a larger leading-edge
sweep angle than the present solutions. In addition,
Concorde's planform cannot produce the lift constrained
for the transonic cruise. Since FLO27 was diverged by
increasing the angle of attack, the transonic drag was
listed as diverged. NAL's design was basically
optimized for the supersonic cruise, but its aspect ratio
was enlarged more than Concorde's to improve the low
speed performance. This design is reconfirmed to
perform reasonably well in all three objectives. One of
the present Pareto solutions is found to have the best
performance in all three objectives. This shape is
referred as sample Pareto solution in Fig. 4. It has the
largest improvement in the transonic drag compared
with NAL's design.

CONCLUSION

The multipoint design optimization of planform shapes
for a supersonic transport wing has been performed by
using MOGA. The objective functions are to minimize
the drags at supersonic and transonic cruise conditions.
To account for the structural constraint, minimization of
the bending moment at the wing root for supersonic
cruise is considered as the third design objective. The
wing planform shape is defined by six design variables.

Physically reasonable Pareto solutions were obtained
from the present optimization. The results identify that
the aspect ratio is one of the important factors for the
aerodynamic performance. Although aerodynamically
good solutions tend to have impracticably large aspect
ratios, compromised solutions with the bending moment
give good candidates for a practical design. One of the
present Pareto solutions is found to outperform the
existing wing design in all design objectives. In future,
the present approach should be extended to optimize the
twist, camber and thickness distributions of the
supersonic wing.
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Fig. 2 Planform definition.

Variable Range

Mñ 35>70(deg)

Mò 35>70(deg)

b1 2>7

b2 2>7

   Croot 10>20

   Ckink 3>15

Table 1 Ranges of design variables.
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Fig. 3 Pareto solutions in the objective function space.
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Fig. 4 Planform shapes of Pareto solutions.

Fig. 5 Existing planform shapes.

Transonic drag è×
10-4

é

Supersonic drag (×
10-4

é

Bending
moment (×10-4)

Concorde (diverged) 75.62 25.86

NAL 2nd 49.88 70.07 60.87
Minimum transonic

drag 21.99 85.21 242.5
Minimum supersonic

drag 35.73 53.24 112.2
Minimum bending

moment 64.24 73.29 44.07
Sample Pareto

solution 46.33 69.39 58.78

Table 2 Performance comparison.

Minimum bending moment

Minimum transonic dragMinimum supersonic drag

Sample Pareto solution

Concorde planform NAL planform


