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Abstract. This paper describes an application of Adaptive Range 
Multiobjective Genetic Algorithms (ARMOGAs) to aerodynamic wing 
optimization. The objectives are to minimize transonic and supersonic drag 
coefficients, as well as the bending and twisting moments of the wings for the 
supersonic airplane. A total of 72 design variables are categorized to describe 
the wing’s planform, thickness distribution, and warp shape. ARMOGAs are an 
extension of MOGAs with the range adaptation. Four-objective optimization 
was successfully performed. Pareto solutions are compared with Pareto optimal 
wings obtained by the previous three-objective optimization and a wing 
designed by National Aerospace Laboratory (NAL). 

1 Introduction 

Evolutionary Algorithms (EAs) have been widely used to solve real-world 
optimization problems in the various fields with the aid of the rapid progress of the 
computers and the algorithms themselves. To treat real-world problems, a large search 
space is often needed. This can lead to slow-down of the convergence and can require 
a large number of function evaluations. Especially in aerodynamic design, which 
requires large computational time for performance evaluation, more efficient and 
effective algorithms are needed. Among several EAs coupled with CFD 
(Computational Fluid Dynamics) proposed to seek optimal solutions in aerodynamic 
designs (for example, see [1-3]), Adaptive Range Genetic Algorithms (ARGAs) 
proposes a unique approach [4]. 

In the real-world optimization, the multiobjective optimization is often required 
rather than the single-objective optimization since there exist tradeoffs between 
various objectives in general. EAs have many attractive advantages to solve the 
multiobjective problem. Since EAs seek optimal solutions in parallel, multiple Pareto 
solutions can be obtained simultaneously without specifying weights between 
objectives [5]. In the aerodynamic multiobjective optimization problem, efficient and 



effective algorithms are required to reduce the large computational time. In this study, 
Adaptive Range Multiobjective Algorithms (ARMOGAs) developed from ARGAs 
for multiobjective optimization are applied to the aerodynamic multiobjective design 
optimization. 

Aerodynamic design for supersonic transport (SST) is considered in this study. A 
next-generation SST is required to improve the supersonic cruising performance and 
to prevent the sonic boom. However, there is a severe tradeoff between lowering the 
drag and boom. Therefore, the next-generation SST may cruise at a supersonic speed 
only over the sea. This means that it is important to improve not only supersonic 
performance but also transonic performance, and thus the multipoint aerodynamic 
optimization is needed. In addition to the reduction of both aerodynamic drags, 
structural constraints should be considered to keep the wings from having 
impractically large aspect ratios. 

Three-objective optimization for supersonic wings, which minimized transonic and 
supersonic drag coefficients and the bending moment at the wing root, were reported 
in [6-7]. In order to consider the viscous effect, a Navier-Stokes solver was used to 
evaluate the aerodynamic performances at both transonic and supersonic conditions 
[7]. Successful results were obtained by the multiobjective optimization. There were 
Pareto solutions that outperformed the NAL’s second design in all three objectives, 
and those wings were similar to the “arrow wing” planform. Although the arrow wing 
is known to be good for supersonic aerodynamics, it is known to have aeroelastic and 
control problems due to a large sweep angle. The primary concern is a pitching (twist) 
moment of the wing. The design results also showed that the second derivative of the 
wing thickness distribution was discontinuous. This lead to another concern of the 
designer for the possible boundary layer separation at the maximum thickness 
location. Therefore the minimization of the pitching moment is added as the present 
fourth objective with an improved wing thickness parameterization. 

National Aerospace Laboratory (NAL) in Japan is working on the scaled 
experimental supersonic airplane project (NEXST-I) [8]. A scaled experimental 
supersonic airplane without a propulsion system will be launched with a rocket in 
2002. The airplane will be separated from the rocket after launch and will glide down 
to sample the flight data in the supersonic region. The flight data will be compared 
with the CFD results to validate the reliability and accuracy of CFD predictions. NAL 
designed several configurations for the experimental aircraft. The present Pareto 
solutions obtained are compared with the NAL’s design. In order to verify the present 
optimization method, the present Pareto solutions are also compared with the Pareto 
solutions obtained before. 

2 Adaptive Range Multiobjective Genetic Algorithms 

To reduce the large computational burden, the reduction of the total number of 
evaluations is needed.  On the other hand, a large string length is necessary for real 
parameter problems. ARGAs, which originally proposed by Arakawa and Hagiwara, 
are a quite unique approach to solve such problems efficiently [9-10]. Oyama 



developed real-coded ARGAs and applied them to the transonic wing optimization 
[4].  

2.1 Real-Coded Adaptive Range Genetic Algorithms 

The main difference between ARGAs and conventional GAs is the introduction of the 
range adaptation. The flowchart of ARGAs is shown in Fig. 1. Population is 
reinitialized every M generations for the range adaptation so that the population 
advances toward promising regions. Another difference is the elimination of the range 
limits because design variables are encoded into the normal distribution. 

In the real-coded ARGAs, the real value of i-th design variable Pi is encoded to a 
real number ri defined in (0,1) so that ri is equal to the integrations of the normal 
distribution form -∞ to Pni, 

ri = ∫ ∞−

ipn
N(0,1)(z)dz (1) 

Pi = σi ⋅ pni + µi (2) 

where the average µi and the standard deviation σi of i-th design variable are 
calculated by sampling the top half of the previous population to promote the 
population toward search regions of high fitness. A schematic view of this coding is 
illustrated in Fig. 2. 
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Fig. 1. Flowchart of ARGAs 

 



 
 

Fig. 2. Normal distribution is used for encoding in ARGAs 

2.2 Extension of ARGAs to the Multiobjective Problem 

In this study, ARGAs have to deal with multiple Pareto solutions for the 
multiobjective optimization. The basis of ARMOGAs is the same as ARGAs, but a 
straightforward extension may cause a problem in the diversity of the population. To 
better preserve the diversity of solution candidates, the normal distribution for 
encoding is changed as shown in Fig. 3. The searching region is partitioned into three 
parts (i, ii, iii). The region i and iii make use of the same encoding method as ARGAs. 
In contrast, the region ii adopts the conventional real-number encoding method. 
 

 
 

Fig. 3. Normal distribution used in ARGAs’ encoding is extended to maintain the diversity of 
the population for ARMOGAs 

 

Pni 

ri 

i ii iii 

µ − σ µ + σ 



3 Problem Definitions 

3.1 Objective Functions 

The objective functions used in this study can be stated as follows: 

1. Drag coefficient at transonic cruise, CD,t 
2. Drag coefficient at supersonic cruise, CD,s 
3. Bending moment at the wing root at supersonic cruise condition, MB 
4. Twisting moment at supersonic cruise condition, MT 

In the present optimization, all four objective functions are to be minimized. Both 
the transonic and supersonic drag coefficients are evaluated by a Navier-Stokes 
solver. Both the bending and twisting moments are calculated by directly integrating 
the computed pressure load at the supersonic condition. The bending moment 
represents the lateral moment that acts at the wing root. The twisting moment is the 
pitching moment measured at the leading edge of the root along the line normal to the 
root. The present optimization is performed at two design points for the transonic and 
supersonic cruises. Each flow conditions and the target lift coefficients are described 
below. 

1. Transonic cruising Mach number, M∞,t=0.9 
2. Supersonic cruising Mach number, M∞,s=2.0 
3. Target lift coefficient at transonic cruising condition, CL,t=0.15 
4. Target lift coefficient at supersonic cruising condition, CL,s=0.10 
5. Reynolds number based on the root chord length at both conditions, Re=1.0x107 

To maintain constant lift constraints, the angle of attack is predicted by using CLα 
obtained from the finite difference. Thus, three Navier-Stokes computations per 
evaluation are required. 

3.2 Design Parameters 

Design variables are categorized to planform, warp shape and the thickness 
distribution. The definitions of design parameters are same as the previous 
optimization except for the thickness distribution.  As mentioned earlier, the previous  
thickness definition has the lack of smoothness at the maximum thickness as shown in 
Fig. 4 [11]. To improve it, two more control points, which are symmetrical with 
respect to maximum thickness location, are added as shown in Fig. 5. Therefore, the 
present definition makes the second derivative continuous at the maximum thickness. 
As a result, 11 control points are used to represent the thickness distribution by a 
Bezier curve at three spanwise sections (root, kink and tip). Linear interpolation is 
used to interpolate the thickness distribution in spanwise direction. Table 1 describes 
the constraints for the thickness definition.  



The wing planform is determined by six design variables as shown in Fig. 6. Since 
the wing area is fixed, the chord length at the wing tip is determined automatically. 
Constraints and the range of design variables are described in Tab. 2. The warp shape 
is composed of camber and twist. The camber surface is defined from the airfoil 
camber lines at the inboard and outboard of the wing separately. Each surface is 
represented by the Bezier surface which has four polygons in the chordwise direction 
and three in the spanwise direction. In case of the wing twist, a B-spline curve with 
six polygons is used. The total number of design parameters becomes 72.  
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Fig. 4. Previous thickness definition                        Fig. 5. Present thickness distribution 

 

Table 1. Constraints for thickness distribution 

Maximum thickness  3 < ZP5 < 4 
Maximum thickness location 15 < XP5 < 70 
First derivative constant at P5 ZP4 = ZP5 = ZP6 
Second derivative constant at P5 XP5–XP3 = XP7–XP5, ZP3 = ZP7 
First derivative constant at leading edge XP0 = XP1 

 
 

Table 2. Constraints for planform shape 

Chord length at root 10 < Croot < 20 
Chord length at kink 3 < Ckink < 15 
Inboard span length 2 < b1 < 7 
Outboard span length 2 < b2 < 7 
Inboard sweep angle (deg) 35 < α1 < 70 
Outboard sweep angle (deg) 35 < α2 < 70 
Wing area S = 60 
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Fig. 6. Wing planform is defined by six design variables. Schematic view of bending and 
twisting moments are also shown. 

3.3 Evaluation by CFD 

Previous results showed the importance of the viscous effect for wing designs. Thus, 
the three-dimensional, compressible, thin layer Navier-Stokes code is again used to 
evaluate aerodynamic performance of a three-dimensional wing at both transonic and 
supersonic conditions. This Navier-Stokes code employs total-variation-diminishing 
type upwind differencing and the lower-upper factored symmetric Gauss-Seidel 
scheme [12]. An algebraic mixing length turbulence model by Baldwin and Lomax is 
adopted [13]. To accelerate the convergence, the multigrid method is also used [14]. 

Taking advantage of the characteristic of GAs, the present optimization is 
parallelized on SGI ORIGIN 2000 at the Institute of Fluid Science, Tohoku 
University. The system has 640 PE’s with peak performance of 384 GFLOPS and 640 
GB of memory. The master PE manages the optimization process, while the slave 
PE’s compute the Navier-Stokes code. The population size used in this study was set 
to 64 so that the process was parallelized with 32-128 PE’s depending on the 
availability, because the transonic and supersonic computations can be processed 
separately. It should be noted that the parallelization was almost 100% because almost 
all the CPU time was dominated by Navier-Stokes computations. The present 
optimization requires about six hours per each generation parallelized on 128 PEs. 

3.4 Details of the present ARMOGA 

In this study, the design variables are encoded in the real numbers. Blended crossover 
(BLX-α) is adopted as a crossover operator. This crossover method produces children 
on a segment defined by two parents and user specified parameter α. Parameter α is 
set to 0.5 except for the planform definition design variables. In the case of the six 
planform design variables, α is set to 0.0 to prevent the computational divergence of 
new candidates. After the crossover, mutation takes place at a probability of 20% 
based on a uniform random number selected over 10% of the range.  
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Selection is based on the Pareto ranking method and fitness sharing. Each 
individual is assigned to its rank according to the number of individuals that dominate 
it. A standard fitness sharing function is used to maintain the diversity of the 
population. The so-called best-N selection is also employed. 

A population is set to 64, and the range adaptation is performed every 10 
generations starting from the 15th generation. 

4 Optimization Results 

4.1 Overview of Pareto Solutions 

The evolution was computed for 75 generations. After the computation, all the 
solutions evolved were sorted again to find the final Pareto solutions. The Pareto 
solutions were obtained in four-dimensional objective function space. To understand 
the distribution of Pareto solutions, all Pareto solutions are projected into two-
dimensional objective function space between transonic and supersonic drag 
coefficients as shown in Fig. 7. In this figure, the Pareto solutions obtained from the 
previous optimization with three design objectives are also plotted. The present Pareto 
front is larger than before, in particular, better tradeoff solutions appear in the tradeoff 
surface I. The planform shapes of the extreme Pareto solutions, which minimize 
respective objective functions, appear physically reasonable as shown in Fig. 8. A 
wing, which minimizes the transonic cruising drag, has a less leading-edge sweep and 
a large aspect ratio. On the contrary, a wing with the lowest supersonic drag 
coefficient has a large leading-edge sweep to remain inside the Mach cone.  

4.2 Influences of the bending and twisting moments to drag coefficients 

To examine influences of the bending and twisting moments, all the present Pareto 
solutions in Fig. 7 are labeled by the bending and twisting moments, respectively, as 
shown in Fig. 9. The wings, which locate near the tradeoff surface between transonic 
and supersonic drag coefficients (tradeoff surface I, Fig. 7), have impractically large 
bending moments as shown in Fig.9 (a). The bending moment is closely related to 
both transonic and supersonic drag coefficients. On the other hand, the twisting 
moment has an influence only on supersonic drag coefficient. As a consequence, the 
region II in Fig. 7 was primarily corresponding the minimization of the bending 
moment, not to the new objective function of the twisting moment minimization. The 
planform shapes, which have the lowest bending moment obtain/ed by the present and 
previous optimization respectively, are plotted in Fig. 10. Since these planform shapes 
are supposed to be indifferent, the present minimum wing and the wings belonged to 
the region II are found thanks to ARMOGA. Similarly, the improvement of the 
present tradeoff surface I from the previous result (Fig. 7) is due to ARMOGA. 

Pareto solutions are also projected into the two-dimensional plane with the 
supersonic drag coefficient and the twisting moment in Fig. 11. A clear tradeoff is 



found. Figure 11 is also labeled by aspect ratios but there is no trend in performance 
based on the aspect ratios. 

4.3 Comparison with NAL’s second design and the previous design 

To examine the quality of the present Pareto solutions, two wings are compared with 
NAL’s second design wing as well as the previous wing obtained by three-objective 
optimization. NAL SST Design Team already finished the fourth aerodynamic design 
for the scaled experimental supersonic airplane to be launched in 2002 (NEXST-I). 
To summarize their concepts briefly, the first design determined the planform shapes 
among 99 candidates, then the second design was performed by the warp optimization 
based on the linearized theory. The third design aimed a natural-laminar-flow (NLF) 
wing by an inverse method using a Navier-Stokes code. Finally, the fourth design was 
performed for a wing-fuselage configuration. Because a fully developed turbulence is 
assumed in the present Navier-Stokes computations, it is improper to compare the 
present Pareto solutions to NAL’s NLF wing design. Therefore, the NAL second 
design is chosen for a comparison. 

Table 3 summarizes the aerodynamic performances of four wings compared: two 
present Pareto solutions (A, B), a previous Pareto solution (OBJ-3) and NAL’s second 
design. The aerodynamic calculation of NAL’s and the previous design is performed 
by using the same Navier-Stokes solver. All three Pareto solutions are superior to 
NAL’s second design in all four objectives. The wing planform shapes are compared 
as shown in Fig. 12. The present and the previous planform shapes are similar to the 
“arrow wing” type. On the other hand, NAL’s planform is similar to the conventional 
“delta wing” planform. These results indicate that the present arrow wing doesn’t 
necessarily have a large pitching moment because NAL’s design has a higher pitching 
moment. 

The thickness distributions at the wing root of three Pareto solutions (A, B, OBJ-3) 
are presented in Fig. 13. In this figure, Pareto solutions A and B have much smoother 
thickness distributions than a previous Pareto solution of OBJ-3. The present wings 
do not have a kink in the thickness distribution thanks to the improved 
parameterization, and less likely to cause boundary layer separation.  
 

Table 3. Aerodynamic performances of selected four wings 

 CD,t CD,s MB MT 
Pareto (A) 0.00998863 0.01085439 18.15 62.35 
Pareto (B) 0.01007195 0.01093646 17.39 60.60 
OBJ-3 0.01004036 0.01093742 18.21 61.00 
NAL2nd 0.01010175 0.01097646 18.23 63.31 
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Fig. 7. Projection of present 4-objective Pareto front to transonic and supersonic drag tradeoffs. 
Pareto solutions obtained by previous 3-objective optimization are also plotted here. Extreme 
Pareto solutions are indicated. A previous Pareto solutions with the minimum bending moment 
is also indicated 
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Fig. 8. Typical planform shapes of the extreme Pareto solutions 
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(a) Labeled by bending moment                          (b) Labeled by twisting moment 

Fig. 9. Projection of Pareto front to transonic and supersonic drag tradeoffs labeled by bending 
and twisting moments 
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Fig. 10. Comparison of planform shapes having lowest bending moment obtained by the 
present and previous optimizations 
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Fig. 12. Comparison of planform shapes among selected Pareto solutions and NAL’s design. 
Planform shapes of the present (A, B) and previous results (OBJ-3) are similar to the “arrow 
wing” 
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Fig. 13. Comparison of thickness distributions at the wing root among selected Pareto 
solutions. Thickness distributions of Pareto solutions (A, B) are much smoother at the 
maximum thickness location than that of the previous result (OBJ-3) is 

5 Conclusion 

Four-objective aerodynamic optimization of the wings for SST was performed by 
ARMOGA. In addition to the previous objective functions, which are to minimize the 
transonic and supersonic drag coefficients and the bending moment at the wing root, 
the minimization of the twisting moment is added. The number of design variables is 
increased from 66 to 72 to improve the thickness distribution. A Navier-Stokes solver 
is used to evaluate the aerodynamic performances. 

As a result of the optimization, reasonable Pareto solutions were successfully 
obtained. The planform configurations of the extreme Pareto solutions are found 
physically reasonable. The resulting Pareto front appeared better than the previous 
case thanks to the range adaptation. ARMOGA is confirmed to work well in a large 
search space. By improving the definition of the thickness distributions, more realistic 
thickness distributions are obtained. 

The present Pareto solutions, which are superior to NAL’s second design in all four 
objective functions, are compared with NAL’s wing and an optimal wing obtained 
before. As for the planform, optimal wings are similar to the “arrow wing” type. On 
the other hand, the NAL’s design is similar to the conventional “delta wing” type. It 
also shows that even the arrow wing can reduce the pitching moment below that of 



the NAL second design. The present arrow wing is a good design candidate for the 
next-generation SST.  
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