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Abstract.  This paper examines several niching and elitist models applied to
Multiple-Objective Genetic Algorithms (MOGAs). Test cases consider a simple
problem as well as multidisciplinary design optimization of wing planform
shape. Numerical results suggest that the combination of the fitness sharing and
the best-N selection leads to the best performance.

1. Introduction

Aircraft design presents a grand challenge to numerical optimization. It is in nature
multidisciplinary among aerodynamics, structure, control and propulsion. Each disci-
plinary model has to be accurate enough to predict aircraft performance. Especially,
aerodynamic calculation is computer intensive and the resulting aerodynamic perfor-
mance is very sensitive to the geometry. Therefore, a robust optimization algorithm is
indispensable to this field.

Evolutionary algorithms, Genetic Algorithms (GAs) in particular, are known to be
robust (Goldberg, 1989) and have been enjoying increasing popularity in the field of
numerical optimization in recent years. GAs have been applied to aeronautical prob-
lems in several ways, including parametric and conceptual design of aircraft (Bram-
lette et al., 1989), preliminary design of turbines (Powell et al., 1989), topological
design of nonplanar wings (Gage et al., 1993) and aerodynamic optimization using
Computational Fluid Dynamics (CFD) (for example, Quagliarella et al., 1998).

Furthermore, GAs can search for many Pareto-optimal solutions in parallel, by
maintaining a population of solutions (Goldberg, 1989). Most real world problems
require the simultaneous optimization of multiple, often competing objectives. Such
multiobjective (MO) problems seek to optimize components of a vector valued objec-
tive function. Unlike the single-objective optimization, the solution to MO problem is
not a single point, but a family of points known as the Pareto-optimal set. Each point
in this set is optimal in the sense that no improvement can be achieved in one objec-
tive component that doesn't lead to degradation in at least one of the remaining com-
ponents.

GAs can be very efficient, if they can sample solutions uniformly from the Pareto-
optimal set. Since GAs are inherently robust, the combination of efficiency and ro-
bustness makes them very attractive for solving MO problems. Several approaches
have been proposed (Schaffer, 1985, Fonseca et al., 1993 and Horn et al., 1994) and



one of them to be employed here is called Multiple Objective Genetic Algorithms
(MOGAs) (Fonseca et al., 1993).

Performance of MOGAs can be measured by variety of Pareto solutions and con-
vergence to Pareto front. To construct a better MOGA, several niching and elitist
models are examined in this paper through numerical tests.

2. MOGAs

The first three sections below describe basic GA operators used here. Then the exten-
sion to multiobjective optimization problems are discussed. Finally, the niching and
elitist models are introduced.

2.1. Coding

In GAs, the natural parameter set of the optimization problem is coded as a finite-
length string. Traditionally, GAs use binary numbers to represent such strings: a
string has a finite length and each bit of a string can be either 0 or 1. For real function
optimization, it is more natural to use real numbers. The length of the real-number
string corresponds to the number of design variables.

As a sample problem, let's consider the following optimization:

Maximize: yxyxf +=),(

Subject to: 122 ≤+ yx  and 1,0 ≤≤ yx

Let's represent the parameter set by using the polar coordinates here as

( ) ( )θθ sin,cos, rryx = (1)

since the representation of the constraints will be simplified. Each point (x, y) in the
GA population is encoded by a string (r, θ).

2.2. Crossover and mutation

A simple crossover operator for real number strings is the average crossover (Davis,
1990) which computes the arithmetic average of two real numbers provided by the
mated pair. In this paper, a weighted average is used as

Child1 = ran1·Parent1 + (1-ran1)·Parent2 (2)
Child2 = (1-ran1)·Parent1 + ran1·Parent2

where Child1,2 and Parent1,2 denote encoded design variables of the children (mem-
bers of the new population) and parents (a mated pair of the old generation), respec-
tively. The uniform random number ran1 in [0,1] is regenerated for every design
variable. Because of Eq. (2), the number of the initial population is assumed even.



Mutation takes place at a probability of 20% (when a random number satisfies
ran2 < 0.2). A high mutation rate is applied due to the real number coding. Equations
(2) will then be replaced by

Child1 = ran1·Parent1 + (1-ran1)·Parent2 + m·(ran3-0.5) (3)
Child2 = (1-ran1)·Parent1 + ran1·Parent2 + m·(ran3-0.5)

where ran2 and ran3 are also uniform random numbers in [0,1] and m determines the
range of possible mutation. In the following test cases, m was set to 0.4 for the radial
coordinate r and π/3 for the angular coordinate θ.

2.3. Ranking

For a successful evolution, it is necessary to keep appropriate levels of selection
pressure  throughout a simulation (Goldberg, 1989). Scaling of objective function
values has been used widely in practice. However, this leaves the scaling procedures
to be determined. To avoid such parametric procedures, a ranking method is often
used (Goldberg, 1989). In this method, the population is sorted according to objective
function value. Individuals are then assigned an offspring count that is solely a func-
tion of their rank. The best individual receives rank 1, the second best receives 2, and
so on. The fitness values are reassigned according to rank, for example, as an inverse
of their rank values. Then the SUS method (Baker, 1987) takes over with the reas-
signed values. The method described so far will be hereon referred to as SOGA (Sin-
gle-Objective Genetic Algorithm).

2.4. Multiobjective Pareto ranking

SOGA assumes that the optimization problem has (or can be reduced to) a single
criterion (or objective). Most engineering problems, however, require the simultane-
ous optimization of multiple, often competing criteria. Solutions to multiobjective
problems are often computed by combining multiple criteria into a single criterion
according to some utility function. In many cases, however, the utility function is not
well known prior to the optimization process. The whole problem should then be
treated with non-commensurable objectives. Multiobjective optimization seeks to
optimize the components of a vector-valued objective function. Unlike single objec-
tive optimization, the solution to this problem is not a single point, but a family of
points known as the Pareto-optimal set.

By maintaining a population of solutions, GAs can search for many Pareto-optimal
solutions in parallel. This characteristic makes GAs very attractive for solving MO
problems. As solvers for MO problems, the following two features are desired: 1) the
solutions obtained are Pareto-optimal and 2) they are uniformly sampled from the
Pareto-optimal set. To achieve these with GAs, the following two techniques are
successfully combined into MOGAs (Fonseca et al., 1993).

To search Pareto-optimal solutions by using MOGA, the ranking selection method
described above for SOGA can be extended to identify the near-Pareto-optimal set
within the population of GA. To do this, the following definitions are used: suppose



ix  and jx  are in the current population and ( )qfff ,,, 21 �=f  is the set of objec-

tive functions to be maximized,

1. ix  is said to be dominated by (or inferior to) jx , if ( )ixf  is partially less

than ( )jxf , i.e., ( ) ( ) ( ) ( ) ( ) ( )jqiqjiji ffffff xxxxxx ≤∧∧≤∧≤ �2211  and

( ) ( )ji xfxf ≠ .

2. ix  is said to be non-dominated if there doesn't exist any jx  in the popula-

tion that dominates ix .

Non-dominated solutions within the feasible region in the objective function space
give the Pareto-optimal set.

As the first test case examined later in this paper, let's consider the following opti-
mization:

Maximize: xf =1 , yf =2

Subject to: 122 ≤+ yx  and 1,0 ≤≤ yx

The Pareto front of the present test case becomes a quarter arc of the circle

122 =+ yx  at 1,0 ≤≤ yx .

Consider an individual xi at generation t (Fig. 1) which is dominated by pi

t indi-
viduals in the current population. Following Fonseca et al. (1993), its current position
in the individuals' rank can be given by

( ) t
ii pt += 1,rankx (4)

All non-dominated individuals are assigned rank 1 as shown in Fig. 1. The fitness
assignment according to rank can be done similar to that in SOGA.
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Fig. 1. Pareto ranking method.



2.5. Fitness sharing

To sample Pareto-optimal solutions from the Pareto-optimal set uniformly, it is im-
portant to maintain genetic diversity. It is known that the genetic diversity of the
population can be lost due to the stochastic selection process. This phenomenon is
called the random genetic drift. To avoid such phenomena, the niching method has
been introduced (Goldberg, 1989). In this paper, two specific niching models are
examined for MOGAs.

The first model is called fitness sharing (FS). A typical sharing function is given by
Goldberg (1989). The sharing function depends on the distance between individuals.
The distance can be measured with respect to a metric in either genotypic or pheno-
typic space. A genotypic sharing measures the interchromosomal Hamming distance.
A phenotypic sharing, on the other hand, measures the distance between the designs'
objective function values. In MOGAs, a phenotypic sharing is usually preferred since
we seek a global tradeoff surface in the objective function space.

This scheme introduces new GA parameters, the niche size σshare. The choice of σshare

has a significant impact on the performance of MOGAs. In our experiences, it is very
difficult to determine its value on the trial-and-error basis. Fonseca et al. (1993) gave
a simple estimation of σshare in the objective function space as
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where N is a population size, q is a dimension of the objective vector, and Mi and mi

are maximum and minimum values of each objective, respectively. This formula has
been successfully adapted here. Since this formula is applied at every generation, the
resulting σshare is adaptive to the population during the evolution process. Niche counts
can be consistently incorporated into the fitness assignment according to rank by
using them to scale individual fitness within each rank.

2.6. Coevolutionary shared niching

Coevolutionary shared niching (CSN) is an alternate, new niching method proposed
in Goldberg et al. (1998). The technique is loosely inspired by the economic model of
monopolistic competition, in which businessmen locate themselves among
geographically distributed populations – businessmen and customers – where indi-
viduals in each population seek to maximize their separate interests thereby creating
appropriately spaced niches containing the most highly fit individuals.

The customer population may be viewed as a modification to the original sharing
scheme, in which the sharing function and σshare are replaced by requiring customers to
share within the closest businessman’s service area. In other words, a customer is
supposed to be served by the nearest businessman. The number of customers a busi-
nessman serves becomes the niche count. Then, a customer’s raw fitness is divided by
the niche count similar to the original sharing scheme.

The evolution of the businessman population is conducted in a way that promotes
the independent establishment of the most highly fit regions or niches in the search



space. The businessman population is created by an imprint operator that carries the
best of one population over the other. Simply stated, businessmen are chosen from the
best of the customer population.

This model introduces a new GA parameter dmin that determines the minimum dis-
tance between the businessmen. In the following test cases, this parameter dmin was
tuned by the trial-and-error basis and kept constant during the evolution. Niche counts
were incorporated into the fitness assignment according to rank similar to the fitness
sharing.

2.7. Generational models

To examine effects of generational models, two elitist models are considered here.
The first one is the elitist recombination (ER) model that selects two best individuals
among two parents and their two offsprings. The other model is the so-called best-N
(BN) model that selects the best N individuals among N parents and N children simi-
lar to CHC (Eshelman, 1991). These models are compared with the simple genera-
tional (SG) model that replaces N parents simply with N children. The population size
was kept to 100 in all test cases.

3. Comparison of Niching and Elitist Models

From the techniques described above, five optimization results are shown here for

the first test case to maximize xf =1  and yf =2 , subject to 122 ≤+ yx  and
1,0 ≤≤ yx . Figures 2 to 4 show the results obtained from the simple generational

model with the fitness sharing (SG + FS), the elitist recombination with the fitness
sharing (ER + FS) and the best-N with the fitness sharing (BN + FS), respectively.
The GA population is represented by dots and the Pareto front is indicated by a gray
arc. When FS was used, the results were improved by the stronger elitist model.
Among the three generational models examined here, the best-N selection BN was the
best.

Figure 5 shows the results obtained from SG + CSN in gray dots and from BN +
CSN in black dots (dmin = 0.028). The distribution of the gray dots are almost as good
as that of the black dots. It also indicates that the coevolutionary shared niching CSN
provides a significant improvement over FS when combined with SG. The result
obtained from ER + CSN did not show any further improvement and thus it is not
plotted here. Only minor improvements were obtained by using the elitist models.

The use of the adaptive σshare, Eq. (5), seems to give better performance than the use
of the hand-tuned, constant dmin when combined with BN. To confirm this observation,
the results are compared in terms of average values of (r, θ) after 30 generations over
five different runs as shown in Table 1. Better solutions should have r closer to 1 and
θ closer to 45 deg (the uniform distribution in θ should give the average of 45 deg).
For comparison, σshare was also tuned by trail and error (σshare = 0.11).



Table 1. Performance comparison of the niching parameters

constant σshare  constant dmin  adaptive σshare

average r  0.9948  0.9914  0.9958
average θ  44.27 deg  44.78 deg  45.25 deg

This confirms that BN + FS with the adaptive σshare gives the best performance. It
further leads to a speculation: “adaptive σshare (FS) < adaptive dmin (CSN) ?” CSN is
very promising but further investigations will be needed, especially in the area of how
to determine its parameter dmin.
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Fig. 2. Pareto solutions by SG + FS.  Fig. 3. Pareto solutions by ER + FS.
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Fig. 4. Pareto solutions by BN + FS. Fig. 5. Pareto solutions by SG + CSN (gray
dots) and BN + CSN (black dots).



4. Multidisciplinary Optimization of Wing Planform Design

An application of MOGA to multidisciplinary optimization (MDO) of wing planform
design (Takahashi et al., 1998) is examined in this section. The present multiobjective
optimization problem is described as follows:

1. Minimize aerodynamic drag (induced + wave drag)
2. Minimize wing weight
3. Maximize fuel weight (tank volume) stored in wing

under these constraints:

1. Lift to be greater than given aircraft weight
2. Structural strength to be greater than aerodynamic loads

Since the purpose of the present design is to examine the performance of MOGAs
as a system-level optimizer, the design variables for wing geometry are greatly re-
duced. First, aircraft sizes were assumed as wing area of 525 ft2 and total maximum
takeoff weight of 45,000 lb at cruise Mach number of 0.75. Next, as a baseline ge-
ometry, a transonic wing was taken from a previous research (Fujii et al., 1987). The
original wing has an aspect ratio of 9.42, a taper ratio of 0.246 and a sweep angle at
the quarter chord line of 23.7 deg. Its airfoil sections are supercritical and their thick-
ness and twist angle distributions are reduced toward the tip. Then, only two parame-
ters are chosen as design variables: sweep angle and taper ratio.

The objective functions and constraints are computed as follows. First, drag is
evaluated, using a potential flow solver called FLO27 (Jameson et al, 1977). The code
can solve subsonic and transonic flows. From the flow field solution, lift and drag can
be postprocessed. Since the flow is assumed inviscid, only a sum of the induced and
wave drag is obtained. Second, wing weight is calculated, using an algebraic weight
equation as described in Torenbeek (1982). Third, the fuel weight is calculated di-
rectly from the tank volume given by the wing geometry. Finally, the structural model
is taken from Wakayama et al., (1995). In this research, the wing box is modeled only
for calculating skin thickness. Then the wing is treated as a thin-walled, single cell
monocoque beam to calculate stiffness. Flexibility of the wing is ignored. The objec-
tive function values and constraints' violations are now passed on to the system-level
optimizer. MOGA is employed as the system-level optimizer here. When any con-
straint is violated, the rank of a particular design is lowered by adding 10.

In this section, the elitist model was frozen to BN and the results were compared
between two niching models, FS and CSN. Figure 6 shows the resulting Pareto front
obtained from BN + FS. BN + CSN gave a similar Pareto front and thus the result is
not presented here. The major difference of the two, however, appears in the conver-
gence history. As shown in Fig. 7, FS was able to converge the population to the
Pareto front, but CSN was not. This is probably because of the adaptive σshare used in
FS. This result again suggests a need of an adaptive dmin. Figure 8 shows wing plan-
form shapes of the resulting Pareto solutions.
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Fig. 8. Planform shapes of Pareto solutions.

5. Conclusion

Niching and elitist models have been examined for multiobjective Genetic Algorithms
(MOGAs). The fitness sharing and coevolutionary shared niching models were con-
sidered for niching. Two elitist models, the elitist recombination and the best-N se-
lection were compared with the simple generational model. The test cases indicate
that the combination of the fitness sharing and the best-N selection provides the best
performance for MOGAs so far. The results also suggest a need of an adaptive for-
mula for dmin in the coevolutionary shared niching scheme.
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