

August 3, 2012

The 34th International Symposium on Combustion

Characteristics of *n*-heptane and toluene weak flames in a micro flow reactor with a controlled temperature profile

<u>Mikito Hori</u>, **Hisashi Nakamura**, Takuya Tezuka, Susumu Hasegawa and Kaoru Maruta

Institute of Fluid Science, Tohoku University

Background

Fundamental ignition characteristics of gasoline surrogate

n–Heptane and toluene are one of the major components of gasoline surrogate

- High reactivity (ON = 0)
- A large number of experiments in a wide range of temperature

Toluene

- Low reactivity (ON = 120)
- Few experiments especially in low to intermediate temperature

A micro flow reactor with a controlled temperature profile

Micro flow reactor with controlled temperature profile

- Imposed wall-temperature profile along inner surface of reactor
- Inner diameter of the tube < Quenching diameter
- Laminar flow (*Re* ≈ 1 100)
- Constant pressure

Interpretation of flame behavior in micro reactor

- Three regimes were observed experimentally, numerically and theoretically
- Weak flame branch = ignition branch in Fendell curve
- Weak flame temperature ≈ wall temperature

Reactions in the temperature zone relevant for initiation of ignition

Separated weak flames and multi-stage ignition

- Reactions in initiation of ignition can be investigated by steady, spatially-separated weak flames
- Spatial separation = identification of onset temperature of reactions 5

Fuel reactivity measurement

* Hori, et al., CNF (2012)

Cetane number dependence: next presentation (5E06)

The methodology of a micro flow reactor with a controlled temperature profile is employed for *n*-heptane, toluene and their blends

Investigate *n*-heptane/air, toluene/air and blends/air weak flames to examine effect of toluene addition to ignition process

Experimental setup

- Stationary temperature profile along inner surface of reactor (300–1300 K for 4 cm)
- U₀ = 2.5 cm/s; P = 1 and 5 atm; d = 1 (P = 5 atm) and 2 mm(P = 1 atm)
- Flame images were taken by CH-filtered camera at 2 min. exposure

Gas sampling

- Maximum wall temperature was controlled from 300 to 1300 K
- (Partially) burned gas was sampled from the reactor exit

Case	Label	
Pure <i>n</i> –heptane	100:0	$\phi = 1$, <i>n</i> -heptane/air mixture
N ₂ -diluted <i>n</i> -heptane	50:0	ϕ = 1, diluted by N ₂ and the amount of <i>n</i> —heptane is the same as 50:50
<i>n</i> -heptane/toluene blend	50:50	$\phi = 1$, <i>n</i> -heptane:toluene = 50:50, blend/air mixture
Pure toluene	0:100	ϕ = 1, toluene/air mixture

Computational method

Flame code: PREMIX-based 1-D steady code

Gas-phase energy equation:Heat transfer with wall $\dot{M} \frac{dT}{dx} - \frac{1}{c_p} \frac{d}{dx} \left(\lambda A \frac{dT}{dx} \right) + \frac{A}{c_p} \sum_{k=1}^{K} \rho Y_k v_k c_{pk} \frac{dT}{dx} + \frac{A}{c_p} \sum_{k=1}^{K} \dot{\omega}_k h_k W_k \left[-\frac{A}{c_p} \frac{4\lambda N u}{d^2} (T_w - T) \right] = 0$ Measured wall-temperature profile alongInner surface of reactor was given to T_w

Kinetic models: *n*-heptane/*iso*-octane/toluene Dooley, et al., CNF 157 (2010) 2333-2339.

Conditions: • d = 2 mm

- U₀ = 2.5 cm/s
- *P* = 1 atm

Effect of toluene addition to *n*-heptane at atmospheric pressure (Flame images)

Pure *n*-heptane

Second hot flame Flow 2 mm Luminosity **First hot flame Cool flame** 700 800 900 1000 1100 1200 Wall temperature (K)

Yamamoto, et al., PCI 33.

Pure *n*-heptane (100:0) and pure toluene (0:100)

• T_w at toluene weak flame > T_w at 2nd hot flame of *n*-heptane

Pure *n*-heptane (100:0) and blend (50:50)

15

N₂-diluted *n*-heptane (50:0) and blend (50:50)

16

Flame images vs HRR profiles

Wall temperature at 2nd weak flame:

pure *n*-heptane < blend (50:50) < pure toluene

Effect of toluene addition to *n*-heptane at atmospheric pressure (Species profiles)

Comparison of species profiles: pure *n***-heptane**

Cool flame: CH_2O is produced1st hot flame: CH_2O is oxidized; CO and CH_4 are produced2nd hot flame:CO and CH_4 are oxidized

Comparison of species profiles: pure toluene

Experiment: one weak flame; Computation: two HRR peaks

Computed CO > measured CO

The mechanism would overestimate reactivity at 1st hot flame₂₀

Comparison of species profiles: blend (50:50)

Measured species profiles are in good agreement with computed ones

Comparison of computed species profiles:

n-heptane and N₂-diluted *n*-heptane

The peak values of CH_2O , CO and CH_4 in N_2 -diluted *n*-heptane (50:0) are almost half of those in pure *n*-heptane (100:0)

Comparison of measured species profiles: n-heptane vs blend

- The peak value of CH₂O in blend is almost half of that in *n*-heptane
 → Toluene does not affect cool flame of *n*-heptane.
- The peak values of CO and CH₄ in blend are comparable with those in n-heptane → A small amount of toluene oxidizes at 1st hot flame 23

Effect of toluene addition to *n*-heptane at elevated pressure

Flame images at P = 5 atm

n-heptane

blend

n–heptane:toluene=70:30

Cool flame of blend shifts to higher temperature region than that of *n*-heptane

Toluene would inhibit low-temperature chemistry at elevated pressure

Conclusions

The methodology of a micro flow reactor with a controlled temperature profile has been employed for *n*-heptane, toluene, and blends.

- Toluene shows one weak flame while the model shows two peaks of heat release rate. Computed CO mole fraction at 1st hot flame is higher than measured one
- *n*-heptane, blend and toluene are in order of increasing wall temperature at 2nd hot flame
- Toluene does not affect cool flame at atmospheric pressure while wall temperature at cool flame shifts to higher temperature region at elevated pressure