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➢ 2020-2021(March): Flow Hemodynamics prediction via deep learning 

Research assistant for Prof. Makoto Ohta. 

The interventional treatment of cerebral aneurysm requires hemodynamics to provide proper guidance. 

Computational fluid dynamics (CFD) is gradually used in the calculation of cerebral aneurysm 

hemodynamics before and after Flow-diverting (FD) stent placement.  However, the complex operation 

(such as the construction and placement simulation of stent) and high computational cost of CFD hinder its 

application. To solve these problems, we develop aneurysm hemodynamics point cloud data sets and a deep 

learning network with dual sampling channels. The flexible point cloud format can represent the geometry 

and flow distribution of different aneurysms with high resolution. The proposed network can directly analyze 

the relationship between aneurysm geometry and internal hemodynamics, so as to further realize the flow 

field prediction and avoid the complex operation of CFD. Statistical analysis shows that the prediction results 

of hemodynamics by our deep learning method are consistent with the CFD method (error function<10%), but 

the calculation time is reduced by 1800 times. We develop a novel deep learning method, which can 

accurately predict the hemodynamics of different cerebral aneurysms before and after FD stent placement 

with low computational cost and simple operation process. 

➢ 2018-2020: Flow Hemodynamics prediction via deep learning 

Research assistant for Prof. Makoto Ohta. 

The clinical treatment planning of coronary heart disease requires hemodynamic parameters to provide proper 

guidance. Computational fluid dynamics (CFD) is gradually used in the simulation of cardiovascular 

hemodynamics. However, for the patient-specific model, the complex operation and high computational cost 

of CFD hinder its clinical application. To deal with these problems, we develop cardiovascular hemodynamic 

point datasets and a dual sampling channel deep learning network, which can analyze and reproduce the 

relationship between the cardiovascular geometry and internal hemodynamics. The statistical analysis shows 



that the hemodynamic prediction results of deep learning are in agreement with the conventional CFD 

method, but the calculation time is reduced 600-fold. In terms of over 2 million nodes, prediction accuracy of 

around 90%, computational efficiency to predict cardiovascular hemodynamics within 1 second, and 

universality for evaluating complex arterial system, our deep learning method can meet the needs of most 

situations. 

➢ 2017- 2018: Pulse wave pattern classification via deep learning 

Research assistant for Prof. Makoto Ohta. 

Owing to the diversity of pulse-wave morphology, pulse-based diagnosis is difficult, especially 

pulse-wave-pattern classification (PWPC). A powerful method for PWPC is a convolutional neural network 

(CNN). It outperforms conventional methods in pattern classification due to extracting informative 

abstraction and features. For previous PWPC criteria, the relationship between pulse and disease types is not 

clear. In order to improve the clinical practicability, there is a need for a CNN model to find the one-to-one 

correspondence between pulse pattern and disease categories. In this part of study, five cardiovascular 

diseases (CVD) and complications were extracted from medical records as classification criteria to build pulse 

data set 1. Four physiological parameters closely related to the selected diseases were also extracted as 

classification criteria to build data set 2. An optimized CNN model with stronger feature extraction capability 

for pulse signals was proposed, which achieved PWPC with 95% accuracy in data set 1 and 89% accuracy in 

data set 2. It demonstrated that pulse waves are the result of multiple physiological parameters. There are 

limitations when using a single physiological parameter to characterise the overall pulse pattern. The 

proposed CNN model can achieve high accuracy of PWPC while using CVD and complication categories as 

classification criteria. 

➢ 2014-2017: Design and Test of Pulse Wave Measurement Systems 

Research assistant for Prof. Qiao Aike 

For patients with type 2 diabetes, the evaluation of pulse waveform characteristics is helpful to understand 

changes in arterial stiffness. However, there is a lack of comprehensive analysis of pulse waveform 

parameters. Here, we aimed to investigate the changes in pulse waveform characteristics in patients with type 

2 diabetes due to increased arterial stiffness. 

In this part of study, 25 patients with type 2 diabetes and 50 healthy subjects were selected based on their 

clinical history. Age, height, weight, blood pressure, and pulse pressure were collected as the subjects' basic 

characteristics. The brachial-ankle pulse wave velocity (baPWV) was collected as an index of arterial 

stiffness. Parameters of time [the pulse wave period (T), the relative positions of peak point (T1) and notch 

point (T2), and pulse wave time difference between upper and lower limbs (T3)] and area [the total waveform 

area (A), and the areas of the waveform before (A1) and after (A2) the notch point] were extracted from the 

pulse wave signals as pulse waveform characteristics. An independent sample t-test was performed to 

determine whether there were significant differences between groups. Pearson’s correlation analysis was 

performed to determine the correlations between pulse waveform parameters and baPWV.   

There were significant differences in T3, A, A1, and A2 between the groups (P < 0.05). For patients with type 

2 diabetes, there were statistically significant correlations between baPWV and T3, A, A1, and A2 (P < 0.05). 

This study quantitatively assessed changes in arterial pulse waveform parameters in patients with type 2 

diabetes. It was demonstrated that pulse waveform characteristics (T3, A, A1, and A2) could be used as 



indices of arterial stiffness in patients with type 2 diabetes.. 
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Abstract 

The clinical treatment planning of coronary heart disease requires hemodynamic parameters to 

provide proper guidance. Computational fluid dynamics (CFD) is gradually used in the simulation of 

cardiovascular hemodynamics. However, for the patient-specific model, the complex operation and 

high computational cost of CFD hinder its clinical application. To deal with these problems, we 

develop cardiovascular hemodynamic point datasets and a dual sampling channel deep learning 

network, which can analyze and reproduce the relationship between the cardiovascular geometry and 

internal hemodynamics. The statistical analysis shows that the hemodynamic prediction results of 

deep learning are in agreement with the conventional CFD method, but the calculation time is 

reduced 600-fold. In terms of over 2 million nodes, prediction accuracy of around 90%, 

computational efficiency to predict cardiovascular hemodynamics within 1 second, and universality 

for evaluating complex arterial system, our deep learning method can meet the needs of most 

situations. 

Introduction 

Coronary heart disease (CHD) has become a leading cause of global mortality1,2, with more than 

50% of these cases being related to coronary stenosis3. In order to achieve successful therapeutic 

effects, CHD clinical treatment plans require a variety of hemodynamic parameters to provide proper 

guidance. Currently, pressure field-based fractional flow reserve (FFR) is the gold standard for the 

clinical diagnosis of myocardial ischemia severity caused by stenosis4-7. The treatment regimen 
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guided by FFR has been proven safe and effective8,9. For patients with severe myocardial ischemia, 

revascularization is typically required. Coronary artery bypass grafting (CABG) is the most 

commonly used revascularization procedure10. Velocity field-based postoperative blood flow 

changes in the grafts and the distal end of the stenotic coronary artery are thought to be the most 

direct parameter for assessing the influence of CABG11,12. However, the application rate of 

hemodynamic parameters in clinical practice is low, mainly due to its high measurement cost and 

potential risks during catheter insertion. Taking invasive FFR as an example, the price of the pressure 

guide wire required for measurement is relatively high. In addition, the use of vasodilator drugs such 

as adenosine may increase the time and cost of interventional surgery13, and may also increase the 

surgical risk of patients with adenosine sensitivity or asthma14. Therefore, obtaining hemodynamic 

parameters including velocity and pressure inexpensively and non-invasively is crucial for the 

support of CABG and the treatment of CHD. 

A large number of previous studies have used computational fluid dynamics (CFD) to obtain 

cardiovascular hemodynamics15-19. Based on the patient's cardiovascular geometry, provided by 

medical imaging data (e.g., MRI, CT, etc.) and given boundary conditions, CFD can inexpensively 

and non-invasively obtain solutions for velocity and pressure through the conservation of mass and 

momentum under isothermal and incompressible assumptions. However, the cost to model 

cardiovascular hemodynamics with available computational resources is very high20. When subjects' 

personalized CFD boundary conditions (e.g., the inlet is set to pulsatile flow, and the outlet pressure 

is an invasive measured value) are used to calculate the hemodynamics of complex cardiovascular 

models with small grafts and coronary branches, even high-performance computational clusters 

usually require several hours of iteration to ensure the accuracy of the model. Even with simplified 

boundary conditions (e.g., steady flow at the inlet and zero pressure at the outlet), CFD methods 

require a calculation time around ten minutes. In addition, each patient's cardiovascular geometry is 

unique. This means that the CFD procedure will need to be completed separately and repeatedly for 

each patient. The high computational cost of CFD hinders its clinical application to the treatment of 

CHD, such as the inability to provide surgical guidance. Therefore, it has become increasingly 

necessary to develop a cardiovascular hemodynamic calculation method that can reduce calculation 

costs while ensuring model accuracy. 

The development of deep learning, one of many machine learning methods, provides a new way to 

solve the above problems. Deep learning detects distributed representation features of data by 

constructing neural networks and combining low-level features to form more abstract high-level 



features or attribute features, thus completing the task of classification or regression21-27. Advanced 

deep learning algorithms and high-performance GPU servers can greatly reduce computing times 

while ensuring high accuracy. Due to the development of deep learning techniques, some studies 

have introduced its application to predict 2D/3D flow fields from geometrical features. For example, 

Guo et al. put forward a calculation method of 2D flow around simple geometric models based on 

convolutional neural networks28. And Liang et al. proposed a deep learning method to predict 3D 

simplified thoracic aortic hemodynamics29. However, the research concerning predictions of 

hemodynamics via deep learning is still very limited30. The main limitations of these studies are: 1) 

most studies focus on 2D flow fields, which have a limited scope of application31-34, 2) the 3D flow 

field model only appears in ideal geometry, and sample resolution in the dataset is too low to 

represent complex flow field distributions and geometric structures28,29. For CABG surgery, a 

cardiovascular model with small grafts and coronary branches has an intricate geometry and internal 

flow field distribution. Therefore, in this study, in order to accurately predict complex 3D 

cardiovascular hemodynamics with limited samples, new requirements to adapt to the flexibility and 

high resolution of the input geometry have been imposed on datasets and deep learning networks, 

which is also the main technical problem and contribution of this study. Concerning the dataset, each 

sample must have enough spatial resolution to resolve complex flow field and model geometry. 

Therefore, it is necessary to find a new, high-resolution sample representation format. And 

concerning the network, it is necessary to propose a new network structure that can effectively 

handle the new sample format. 

In this study, with the aim of predicting 3D hemodynamics in the real cardiovascular systems of 

patients with coronary stenosis (e.g., geometry containing aorta, coronary arteries, and bypass graft), 

we have proposed a new deep learning method which could predict the velocity field and pressure 

field based on the geometric features of the model. We collected cardiovascular data with small 

branches from computed tomography angiography (CTA) performed on 110 patients with CHD for 

model expansion and simulation of CABG surgery. Under certain boundary conditions, a CFD 

method was used to obtain the hemodynamic results (i.e., velocity and pressure field) of all models. 

Later, we converted the CFD results into high-density 3D point clouds. The point cloud inherited the 

ability of CFD results to characterize the geometric structure and flow field distribution of the model, 

which could characterize the complex flow field distribution and geometry of real cardiovascular 

models with high resolution35,36. On this basis, preoperative and postoperative cardiovascular 

hemodynamic point datasets were established, respectively. We also proposed a new deep learning 



network based on the PointNet structure37, which could effectively resolve the disorder of point 

clouds and introduce spatial relationships. By extracting and integrating global and local features of 

the point cloud, the network could analyze and reproduce the relationship between vessel geometry 

in the point cloud datasets and the corresponding hemodynamics. The deep learning network only 

needs to be trained once. Next, when we input cardiovascular geometry information from a new 

patient, the corresponding 3D hemodynamic parameter prediction results could be obtained within 1 

second. In order to verify the accuracy of our deep learning method, we define error functions (ERR), 

normalized mean absolute error (NMAE), and mean relative error (MRE) to evaluate the difference 

between the two methods. Based on the acquired hemodynamic results, we further calculated and 

compared the preoperative FFR and the postoperative blood flow of the graft and the distal stenotic 

coronary artery. Statistical analysis results showed that the predicted results of deep learning were in 

agreement with the traditional CFD method, but the calculation time was reduced 600-fold. Our deep 

learning method aims to realize the prediction of velocity and pressure fields before and after CABG 

surgery instead of CFD. To the best of our knowledge, this study represents the first report 

describing deep learning techniques that can effectively and accurately predict 3D hemodynamics of 

complex cardiovascular system with small grafts and coronary branches with limited data. 

Results 

Prediction results of velocity field 

When the preoperative and postoperative velocity field datasets were used as inputs to the proposed 

deep learning network, the loss function value versus epochs was made available (as seen in 

Supplementary Fig. 1). The loss function fully converged. 

We compared the prediction results of deep learning with CFD. Fig. 1 displays the streamline 

diagram of a 3D velocity field distribution and a cross-sectional view of velocity magnitude contour 

in the same areas. It showed that the velocity fields obtained by the two methods had good reliability. 

Our deep learning method could predict the distribution of velocity fields in the entire cardiovascular 

model before and after CABG, which included not only general attributes such as laminar blood flow, 

but also the occurrence of complex vortex structures. 

 

 

 



 

Fig. 1 Comparison of velocity fields from CFD and deep learning (DL) methods, using a sample 

with a stenosis rate of 85%. a-d are streamline diagrams of the entire cardiovascular internal flow 

field before and after CABG obtained from CFD and DL. The position indicated by the black arrow 

in a-d is the vortex region of ascending aorta. The position indicated by the red arrow in c-d is the 

grafts. e-h are streamline diagrams of the coronary artery and grafts flow field. The blood flow 

velocity inside the coronary artery is smaller than that in the aorta, which means that it is difficult to 



clearly show the distribution of the internal flow field in the coronary artery under the same velocity 

colour bar. Therefore, the coronary flow field is displayed separately. The position indicated by the 

blue arrow in g-h is the connection site between the graft and the LAD. i-j are cross-sectional views 

of the velocity distribution, respectively from A: RA branch; B: the proximal end of LAD before 

stenosis; C: the distal end of LAD after stenosis; D: descending aorta; E: graft. E can reflect laminar 

flow in the graft. The comparison results confirm the high consistency of the velocity field obtained 

by the two methods. This clearly shows the effect of CABG surgery on the flow field distribution of 

the entire cardiovascular system. 

 

We calculated the mean value of the predicted velocity field ERR of the 100 models in the test sets, 

as shown in Table 1. The result showed that the prediction accuracy of the coronary arteries (NMAE

＜3%, MRE＜5%) and grafts (NMAE＜1.5%, MRE＜2.5%) was higher than that of the aorta and 

superior aortic branch artery (Preoperative: NMAE=6.02%, MRE=9.77%; Postoperative: 

NMAE=6.01%, MRE=9.74%). This was mainly due to the larger magnitude of flow and the 

complicated flow field distribution by vortex and flow separation in both the aorta and superior aortic 

branch artery parts. We give detailed explanations and feasible improvements in the prediction error 

analysis section below. 

Table 1. Performance evaluation of the velocity field  

 

 
ERR(%) 

Proximal end 

of LAD 

Distal end of 

LAD 
LCX RA Graft 

Aorta and superior 

aortic branch artery 

Preoperative 

NMAE 2.62±1.47 2.53±1.02 2.33±1.25 2.91±1.64  6.02±2.97 

MRE 4.12±2.46 3.97±2.77 4.61±2.13 4.35±1.87  9.77±3.86 

Postoperative 
NMAE 2.60±1.43 2.64±1.25 2.33±1.25 2.91±1.64 1.12±0.57 6.01±2.96 

MRE 4.11±2.42 4.21±2.96 4.61±2.13 4.35±1.87 2.01±1.25 9.74±3.83 

 

Deep learning prediction results (shown in Fig. 1 and Table 1) could reflect the effect of CABG on 

the distribution of internal flow field in the cardiovascular system. It could accurately reproduce 

velocity fields in the small lesion coronary and reconstructed grafts, which meant that it could not 

only reflect the preoperative ischemic condition of LAD branches with different stenosis rates, but 

also signal the postoperative improvement of blood supply. In addition, it could be seen from the 

predicted results that CABG had a big impact on the flow field of the grafts and LAD with stenosis 

but had little influence on the flow field of other parts. The proposed network could effectively 



identify significant and non-significant disturbances of the graft on the flow field, which highlighted 

its high performance. 

Prediction results of pressure field 

This study aimed to develop a universal deep learning method. The same network structure could 

accomplish predicting hemodynamic parameters with different attributes, which could then be 

proven via the analysis results of the velocity field and pressure field. 

Different from the velocity, the pressure in the flow field was scalar, that was, the pressure at a point 

had the same value in all directions. There were different vector components of velocity vector in X, 

Y and Z directions. Therefore, the pressure datasets as the network input contained less information 

than the velocity field datasets, which was reflected in the convergence speed of the loss function 

value versus epochs (as seen in Supplementary Fig. 1). The loss function converged faster. 

Fig. 2 displays a 3D pressure distribution cloud map obtained from deep learning and CFD method, 

with a cross-sectional view of the same part. The pressure fields obtained by the two methods were 

also in agreement. Our deep learning method could accurately replicate the pressure distribution of 

the entire cardiovascular model with small grafts and coronary branches. 



 

Fig. 2 Comparison of pressure field from CFD and deep learning (DL), using a sample with a 

stenosis rate of 85%. Because the CFD outlet boundary was set as zero pressure condition, the 

pressure value in this figure was actually the pressure difference relative to the coronary outlet. a-d 

are pressure distribution cloud maps of the entire cardiovascular before and after CABG obtained 

from CFD and DL. e-f are cross-sectional views of the pressure distribution, respectively from A: the 

proximal end of LAD before stenosis; B: the distal end of LAD after stenosis; C: descending aorta; D: 

graft. The comparison results confirm the high consistency of the pressure field obtained by the two 

methods. The results of coronary pressure prediction can help us calculate FFR to further evaluate 

the performance of our deep learning method. 

 



We calculated the mean value of the predicted pressure field ERR of the 100 models in the test set, 

as shown in Table 2. The prediction accuracy of pressure fields of coronary artery (NMAE＜2.5%, 

MRE＜4%) and grafts (NMAE＜1.5%, MRE＜2%) was also higher than that of the aorta and 

superior aortic branch artery (Preoperative: NMAE=4.30%, MRE=7.61%; Postoperative: 

NMAE=4.28%, MRE=7.35%), as explained in the prediction error analysis section below.  

Based on the velocity and pressure field, we calculated important clinical indicators related to CABG 

surgery: preoperative FFR of the lesion LAD and the postoperative blood flow of the graft and the 

distal stenotic coronary artery. The performance of our deep learning method could be further 

evaluated by comparing the indicators obtained by the two methods, which is described in detail 

below. 

Table 2. Performance evaluation of the pressure field 

 
ERR(%) 

Proximal end 

of LAD 

Distal end of 

LAD 
LCX RA Graft 

Aorta and superior 

aortic branch artery 

Preoperative 
NMAE 2.03±1.13 1.83±1.18 1.71±1.49 2.04±1.12  4.30±1.58 

MRE 3.55±1.74 3.12±1.63 3.52±1.97 3.63±1.96  7.61±1.99 

Postoperative 

NMAE 1.99±1.09 1.96±1.31 1.71±1.49 2.04±1.12 1.01±0.47 4.28±1.55 

MRE 3.52±1.72 3.57±1.98 3.52±1.97 3.63±1.96 1.98±0.97 7.35±1.89 

 

Deep learning improves computing efficiency 

After the training was completed, and when the point coordinate space information of the 

cardiovascular model in the test set was input to the network, the hemodynamics of the query point 

could be obtained within 1 second using a NVidia GeForce GTX 1080 Ti GPU. For the CFD method, 

the calculation time of one model on an Intel Xeon Gold 6148 2.4Ghz × 2 CPU server was about 10 

minutes. Deep learning improved the computational efficiency of a single model 600-fold. Although 

it took some time (about 40 hours) to complete network training, this process only needs to be 

completed once to predict the hemodynamic of all models in the given test set. Compared to the 

traditional CFD method, where each model requires independent simulation calculations, the 

computational cost of deep learning is far less than CFD. 

Together with the accuracy analysis of the results, the proposed deep learning network could 

efficiently and accurately predict 3D hemodynamics of complex cardiovascular system with small 

grafts and coronary branches. This also meant that deep learning has broad application prospects, 

such as the possibility of application in the early planning or even real-time support of CABG. 



Calculate FFR and improved flow based on prediction results 

In order to further confirm the accuracy and clinical utility of our deep learning method, we 

calculated the preoperative FFR value and postoperative blood flow value of the grafts and the distal 

end of the stenosis using the hemodynamic results acquired from CFD and deep learning, 

respectively. The FFR was defined as the ratio of the mean pressure at a cross section 3 cm 

downstream of the stenosis to the mean pressure at the LAD coronary entry region38. Improved blood 

flow was defined as graft inlet flow, which was calculated based on the diameter and velocity of the 

graft inlet section. Fig. 3a and 3b were the scatter plots of FFR and improved flow on each model 

obtained from the two methods, which showed that the correlation between the FFR and improved 

flow attained from these methods was excellent (FFR: r=0.9580, P<0.001; Flow: r=0.9734, P<0.001). 

Also, the Bland-Altman analysis result is as shown in Fig. 3c and 3d: 97 sets of FFR data and 97 sets 

of improved flow data fall within the 95% confidence interval (FFR: -0.07780-0.09254; Flow: 

-1.282-0.8568), which confirmed that the clinical indicators calculated by these methods were in 

agreement. 

Our deep learning method reduced the computational time of hemodynamics to 1 second, and its 

output was a point cloud format which was easy to post-process. On this basis, the calculation time 

of clinical indicators such as FFR and improvement of blood flow could also be reduced to a few 

seconds while ensuring high accuracy, which further confirmed the superiority of our deep learning 

method. 



 

Fig. 3 Comparison of FFR and improved blood flow obtained from CFD and Deep Learning. a is a 

scatterplot of FFR values from CFD (FFRCFD) and deep learning (FFRDL). b is a scatterplot of 

improved blood flow values from CFD (FLOWCFD) and deep learning (FLOWDL). c-d are 

Bland-Altman analysis plot of corresponding a and b. The hemodynamic results used to calculate 

FFR and improved blood flow are from 100 cardiovascular models in the test set. 

 

Prediction error analysis 

We extracted regions with large prediction error function values (MRE>10%) in the entire 

cardiovascular model. These regions were highly consistent with the vortex regions in the CFD 

calculation results, as shown in Fig. 4a and 4b. Vortexes were mainly distributed in the aorta and 

superior aortic branch artery rather than the coronary artery and graft. Points in the aorta and superior 

aortic branch artery region accounted for more than 99% of the query point cloud, and more than 

30% of the points in the whole region were located in the vortex region, which was the main source 



of prediction errors for the cardiovascular model. We extracted the points only in the vortex region 

which was defined with Eigen Helicity method, level 0.005, actual value 44.89 s-1 for predicted 

results and calculated the error as shown in Fig. 4c. The points in the coronary artery and graft part 

only accounted for 1% of the query point cloud, and only about 10% of them were in the vortex 

region, which had little effect on the prediction errors. The vortex distribution also explained why the 

graft and coronary parts had higher prediction accuracy. 

 



Fig. 4 Prediction error analysis. Using a model in the preoperative test set as a sample, a shows the 

vortex regions in its CFD simulation flow field, which are mostly distributed in the aorta and 

superior aortic branch artery rather than the grafts and coronary arteries. Compared to the entire 

model, the number of points in the vortex region of grafts and coronary arteries only accounted for 

0.1% of all query points. For most models, there is an obvious vortex region in the ascending aorta 

area circled by the red box. In order to clearly indicate the distribution of points with high prediction 

errors (MRE> 10%), b shows the points with high errors in deep learning predicted velocity field of 

the same model as a (the circled area). The distribution of these points is highly consistent with the 

vortex region in a, which proves that the error mainly comes from the vortex region of the aorta and 

superior aortic branch artery. c shows the prediction errors along to the different size of training set 

only in the vortex region. c shows the influence of the training set size on MRE of the vortex region. 

We fix the test set and increase the size of the training set from 10% to 100%. Then we calculate and 

observe the MRE of the vortex region. When the size of the training set reach 100%, MRE still 

displays a downward trend. The minimum value of 28.53% is still far greater than the aorta and 

superior aortic branch artery MRE of 9.74±3.83% as shown in Table 1. It further confirms the source 

of the prediction error and shows that it is necessary to increase the size of training sets. 

 

Compared to laminar flow, the vortex flow part was extremely complicated. Previous studies that 

used deep learning to predict complex vortexes required much more training data than ours, even in 

2D space39-41. Taking Lee's research as an example39, in a 2D plane with a size of 250×250 (grid 

cells), 500,000 vortex samples were needed to train the network. The number of samples was far 

more than that of this study. However, the complexity of the vortex (2D) was lower than that of this 

study (3D). Therefore, we hypothesized that the limited dataset of this study was not sufficient to 

fully characterize the characteristics of vortex, which could lead to a decrease in the accuracy of the 

prediction results. To verify this theory, we fixed the test set and increased the size of the training set 

from 10% to 100% and then calculate the MRE of the vortex region, as shown in Fig. 4c. Even at the 

maximum of the training set, the MRE of the vortex part still had a downward trend. With a larger 

dataset, accuracy would also improve. The collection of more cardiovascular models of patients with 

coronary artery stenosis to build a richer dataset is necessary as more data will lead to higher 

prediction accuracy and better model performance. 



Discussion 

In this study, we used deep learning to predict 3D hemodynamics of complex cardiovascular systems 

with small grafts and coronary branches before and after CABG surgery. Our results showed that 

calculation results of the deep learning and CFD methods were highly consistent, and the calculation 

efficiency was improved 600-fold. This study proved that deep learning could achieve efficient and 

accurate predictions of 3D hemodynamics in complex models, which also means that it has great 

application value in scientific research and clinical fields. 

The comparative analysis of our deep learning method against previous deep learning approaches is 

available in the Supplementary Table 1. As mentioned above, there was no previous research that 

achieved 3D hemodynamic prediction of complex models such as thoracic aortic tree including the 

small grafts and coronary branches. Our work made up for this gap, which was mainly due to the use 

of the point cloud to create datasets and propose a high-performance deep learning network. Previous 

studies typically required normalized flow field data to help deep learning networks obtain 

correspondence between model geometry and flow field distribution24,25. In other words, regular 

spatial relationships (e.g., orthogonalization) are introduced into the flow field data by interpolation 

or other methods. Therefore, the spatial resolution of flow field data depends on space segmentation 

size during normalization. When there are big differences in the size of different parts of the model, 

such as the radius of the aorta which is much larger than that of the coronary artery and the graft in 

this study, it will be very difficult to choose the appropriate space segmentation size. Large 

segmentation sizes cannot characterize small parts of the model. Small segmentation size results in a 

large amount of data exceeded the upper limit of server processing. For example, when using Guo et 

al's normalization method to process the cardiovascular models in this study28, we should place the 

model in a three-dimensional space cuboid. The length, width and height of the cuboid should be the 

maximum value in the corresponding direction of the model. For a cardiovascular model with a 

length of 80 mm, a width of 120 mm and a height of 95 mm, when using 0.1 mm as the segmentation 

size, one 3D cardiovascular model needs to have 800 × 1200 × 950 = 836,000,000 normalized points 

to contain the mean shape, which is unacceptable for network and GPU processors. Liang et al. 

proposed a normalization method for deep learning29. However, it was only suitable for large ideal 

aorta, not for the whole complex cardiovascular system, especially for small coronary branches. In 

addition, Liang et al. normalized the thoracic aortic models of different patients to the same meshes 

with only 80100 nodes. However, in this study, the mesh independence test (as seen in the 



Supplementary Methods) showed that for the thoracic aortic, when the number of meshes exceeded 

one million, the CFD simulation results can be considered to be stable. Therefore, the deep learning 

method proposed by Liang et al. still has great limitations in the application range and data resolution. 

Due to limitations of resolution and network performance, most of the previous research objects are 

simple idealized flow fields. Unlike previous approaches, we utilized high-density 3D point clouds to 

build datasets. A point cloud is the connection point of CFD meshes and is generally called a node. It 

is directly output by the mesh result and does not require normalization or other processing. The 

point cloud can represent complex or small features of the model under the appropriate mesh 

setting42,43. In this study, the mesh independence test results (as seen in the Supplementary Methods) 

confirmed that the model contains about 2 million points that could represent the complex structure 

of the entire cardiovascular system, of which 0.4 million were surface model point clouds and 1.6 

million were internal query point clouds. Each point has only spatial coordinates and hemodynamic 

information, which means there is no connection or interaction between them. Thus, it can store a lot 

of useful information with a small amount of data unlike a connected point set. In order to resolve the 

disorder of the point cloud and introduce the spatial relationship, we propose a dual sampling 

channel network structure based on PointNet. Since there is no connectivity information between the 

points, there is no specific input sequence for the points. That is to say, when N points are used as 

input to the network, due to the different input sequence, there may be N! input permutations, that is, 

the disorder of the point cloud. Symmetric function can ensure that the output is the same regardless 

of the order of input, to resolve point disorder37. The dual sampling channel can extract the geometry 

of the model point cloud of the surface as the global geometry feature, and the internal query point 

cloud distribution as the local flow field feature. Global features convey the outer geometry 

information within the model, which can help the query point cloud to obtain its position inside the 

model. Under the uniform CFD boundary conditions, the position of the query point is corresponding 

to the flow field. The local flow field characteristics and the corresponding position information can 

be used as teacher signals to help the network learn the hemodynamic values of a specific position. 

In this way, the spatial relationship is effectively introduced to help the network attain 

correspondence between the model geometry and the flow field distribution. 

Our deep learning method is highly universal, which is not limited to guiding the implementation of 

CABG and the treatment of CHD. It can analyze and reproduce the relationship between complex 

cardiovascular geometry and hemodynamics in a given dataset, which can be extended to the 

hemodynamic simulation of other organs and tissues, or even the flow field research under 



experimental conditions, such as replacing the steady flow 3D PIV experiment with sufficient data. 

From a technical perspective, our deep learning method is highly practical. For different properties of 

hemodynamic parameters, the prediction can still be completed without adjusting the network 

structure, which was difficult to achieve in the past28,29. The analysis results of the velocity and 

pressure fields confirm that the same network structure can achieve high accuracy predictions for 

physical fields with and without spatial components. In addition, point cloud, as a conventional data 

format, can be accepted by most of analysis software (e.g., ANSYS and Python) which makes the 

processing of point cloud data relatively easy. In terms of resolution, universality, accuracy and 

computational efficiency, our deep learning method can meet the needs of most situations. We also 

noticed that the four data sets (preoperative, postoperative, velocity, and pressure fields) need to be 

trained separately as inputs, which increased the computational cost and operational complexity of 

deep learning to a certain extent. Therefore, we will explore potential improvements due to 

similarities in features between the different fields and application scenarios in further work. For 

example, by merging four data sets (with different labels), all prediction results can be output in one 

training session. 

The biggest limitation of this study is the lack of clinical data. In CFD simulation, there is no 

boundary condition information for patients. Currently we adopted constant values on inlets and 

outlets, which have been widely used among a number of geometries44-46. Therefore, the simulation 

results should include differences from real hemodynamics. In future approaches that include 

boundary conditions, another input channel will be required on the network. This input channel will 

take the patient's personalized boundary conditions as the input, and together with the model point 

cloud as the teaching signal to control the training process. In the analysis of prediction accuracy, we 

only compared the prediction results of deep learning with CFD, but lack of comparison with 

clinically measured data of patients (such as invasive FFR). Itu et al.47 and Tesche et al.48 proved that 

under the premise of good consistency between the FFR calculated by deep learning and CFD, 

compared with the invasive FFR, the FFR values calculated by these three methods were also with 

good consistency, which we intend to address in the future. The data for this study comes from a 

project optimizing the treatment plan of coronary stenosis. Therefore, our datasets do not contain 

information on other cardiovascular diseases such as coronary aneurysms or aortic diseases. In 

addition, the point cloud data used in this study is extracted from the CFD meshing result. In the 

point cloud extraction process, we deleted the connection relationship between the grids. Although 

the point cloud can reproduce the CFD flow field prediction results, it also brings potential 



limitations, such as the loss of correlation information between different nodes in the original CFD 

results and the introduction of the disorder of point clouds. Based on the above limitations and 

prediction error analysis results, in future work, we need to increase the number and type of patients 

in datasets to include the characteristics of different cardiovascular diseases and improve the 

accuracy of predictions. Regarding the datasets with several types of disease, we also need to 

establish the quantitative methodology to evaluate the variety of geometry as a training data. 

Secondly, we need to collect physiological information of patients to build the datasets under 

personalized boundary conditions. Based on this study, we aim to build a network with multiple 

constraints, multiple channels of input, and multiple sampling layers in parallel. It can help us use 

deep learning to achieve the prediction of high-dimensional flow field such as fluid–structure 

interaction (FSI), etc. Thirdly, the uncertainty of vessel wall identification should be noted as the 

common limitation in image-based analysis including CFD. Present study exhibits the flow 

estimation on the point clouds which generated on segmented blood vessel. Then, the flow field 

strongly depends on the quality of vessel wall segmentation. Though CFD results from the same STL 

file can exhibit good consistency among different research groups49, still segmentation process from 

DICOM images can lead to variability in geometry50. To overcome this uncertainty of real geometry, 

the establishment of stable segmentation method or normalization of hemodynamic parameters will 

be required. 

Methods 

Ethics approvals 

The experimental scheme and related details of this study were approved by the Institutional Ethics 

Committee of People's Hospital (Beijing, China) and Tohoku University (Sendai, Miyagi, Japan). All 

experiments were carried out in accordance with relevant guidelines and regulations. We explained 

research content to the subjects in detail and obtained their written informed consent. 

Data collection 

The patient data used in this study was based on the project ‘Biomechanics study on quantitative 

relationships between coronary artery stenosis and myocardial ischemia51-53, which focused on the 

diagnosis and optimization of coronary stenosis surgical procedures. The CTA data for 110 patients 

with LAD stenosis who had visited the People's hospital since 2018 was collected and collated by 

professional clinicians with a 128-slice CT scanner (Brilliance iCT, Philips Healthcare, The 



Netherlands). 3D model reconstruction was also performed by the clinician. We obtained 110 STL 

cardiovascular models as raw data. 

Model geometric parameters modification 

The deep learning dataset, which only contained 110 real cardiovascular models, had a very limited 

amount of information, which was far from enough to represent the relationship between the 

geometry of the model and the corresponding hemodynamics. Therefore, based on the statistical 

results of previous cardiovascular morphology studies47,48,54-59, the geometric parameters of the 110 

original cardiovascular models were adjusted to increase the number of models. For each parameter, 

we randomly selected one value within the given range as the modification basis of the original 

model, as shown in Table 3. Based on this method, we extended one original model into nine new 

models, which meant that the total number of models increased to 1100, as shown in Supplementary 

Fig. 2. 

Table 3. Geometric parameters with corresponding ranges 

                          Geometric parameter Parameter details or measurement methods Range 

Coronary 

artery 

Number of branches47,48 
Main branches 3 (LAD, LCX, RC) 

Side branches 0 - 3 

Bifurcation angle between LAD 

and LCX54,55 

The angle described by the two branches in the 

first 10 mm of their course was measured 
30-90° 

Stenosis location Random positions on LAD LAD(main branch) 

Number of stenosis Determined by the patient's actual condition 1-2 

Stenosis Rate Idealized stenosis model 60-90% 

Aorta and 

superior aortic 

branch artery 

Aortic arch angulation56,57  
Angulation of the arch at the level of the left 

subclavian artery 
80-140° 

Diameter of ascending aorta58,59 
Increased or decreased the diameter of original 

artery uniformly 
20-30mm 

Diameter of descending aorta58,59 
Increased or decreased the diameter of original 

artery uniformly 
15-20mm 

Superior aortic branch artery Kept the original geometry  

 

Simulated operation of CABG and CFD simulation 

After model expansion, we performed the simulation implementation of the CABG operation and the 

CFD simulation. 



As the most patients did not have undergone CABG surgery, the virtual bypass surgery was 

performed except for undergone CABG case. With the agreements of clinicians, the left internal 

mammary artery (LIMA) with diameter of 2 mm was deployed using modeling software Mimics 

(Materialize NV, BE). 

According to the generation of geometry, tetrahedron numerical meshes with boundary layers were 

generated by ANSYS-Meshing (ANSYS, Canonsburg, USA). Total mesh number was selected to 

have the number of nodes from 2.83 to 3.01 million based on mesh-independence test.  

Steady flow simulation was performed on ANSYS-CFX (ANSYS, Canonsburg, USA). Blood flow 

was simplified to be an incompressible Newtonian fluid with 1050 kg/m3 density and 0.0035 Pa·s 

viscosity. Velocity boundary of 1.125 m/s was imposed on the inlet assuming the peak wave velocity 

of cardiac cycle60. Outlet boundary was set as zero pressure condition. No-slip condition was 

assigned to all wall boundaries.  

More detail is summarized in the Supplementary Method. 

Creation of datasets and proposal of deep learning network 

Using simulation software (e.g., ANSYS, OpenFOAM, etc.), the high-density 3D point cloud form 

of the four groups—preoperative, postoperative, velocity, and pressure fields— of the CFD 

simulation results could be directly output (i.e., they could be represented as a set of points {Pi | i = 

1, ..., N} in space). Each point Pi was a vector containing spatial coordinates (x, y, z) and 

hemodynamic parameters at that point. Pi was the connection point of CFD meshes (usually called 

node). CFD meshes generation was only related to the geometry of the model. Therefore, the 

distribution of points depended only on the geometry of the model. The position of points in the 

model was fixed, we could not change its spatial distribution. What we could do is to directly extract 

and analyze the points in a certain position through the simulation software.  

We divided each group of point cloud data into two sets: a training set and a test set. The training set 

included simulation results of 1000 cardiovascular models based on the original 100 models. In order 

to ensure the generalization of the deep learning network, the test set consisted of the CFD results of 

100 cardiovascular models that were expanded from the 10 original models which were different 

from the training set. Based on this, the four groups—preoperative, postoperative, velocity, and 

pressure fields— of hemodynamic datasets were established, respectively. These four datasets were 

used independently to train four separate networks. Hence, we obtain four optimal network 

configurations to further predict the corresponding hemodynamics. 



In the case of certain boundary conditions, the values of flow velocity and pressure at each point 

were jointly determined by the overall shape of the model and its specific spatial coordinates. This 

was also the basic principle for CFD to resolve the simulation results via the Navier-Stokes and 

continuity equations. The segmentation network structure of PointNet37 could realize feature 

extraction and hemodynamic prediction of point clouds. This study inherited the concepts of global 

feature and local feature proposed by the original PointNet, and optimized the network structure. 

Since the original PointNet had only one single input channel, global features and local features were 

extracted from the same and all input points, which could help the PointNet identify the relationship 

between these two features. However, it was inevitable that there would be duplication between the 

two features, and then some effective and specific information would be lost. In order to solve this 

problem, a network structure with double input and double sampling channels was proposed in this 

study. The structure and parameter setting were shown in Fig. 5. For each model in the dataset, we 

extracted two types of point clouds. One was the model point cloud, which only included spatial 

coordinates for the outermost points of the cardiovascular model. These points could represent the 

global features of the overall model geometry. The second was the query point cloud, which included 

the remaining points inside the cardiovascular model. These points contained local features such as 

the spatial coordinates of each point and its corresponding hemodynamics. The 3D deep learning 

network had two independent input channels that corresponded to these two point clouds. Two 

feature extraction parts were directly connected to their respective input and sampling channels. This 

effectively enhanced the extraction of effective and specific information from these two features, and 

improved the prediction accuracy. For the same point cloud data, the comparison of prediction MRE 

from the original single channel PointNet and our dual channel network was shown in Table 4. The 

prediction ERR of our dual channel network was lower than that of the original PointNet.  

 

Table 4. Comparison of MRE from original PointNet and our network * 

Hemodynamic Velocity field Pressure field 

Original PointNet 18.42±6.71 14.59±5.31 

Our Network 9.77±3.86 7.61±1.99 

* The MRE is calculated according to the hemodynamic prediction values of preoperative aorta and 

superior aortic branch artery. 



 

Fig. 5 Deep learning network construction. The network takes N points with three-dimensional 

spatial components of x, y, and z (for pressure, the three component values are the same) as input. 

After feature extraction and stitching layer processing, spatial relationships are introduced to extract 

and reproduce the relationship between model geometry and hemodynamic. The Maxpooling layer 

resolves the disorder of the point cloud. The output of the network is the hemodynamic 

three-dimensional spatial components of N points in corresponding query point cloud.  

  

Global features were the global geometric information of the model. Local features referred to the 

location of each point and the corresponding flow field distribution inside the model. These two 

features both contained the geometric features of the same cardiovascular model (commonality). The 

two features also had different effective information (difference). The network needed to extract 

commonality and difference and learned the correlation between them to further realize the flow field 

prediction.  

Based on the above principle, the network construction scheme was as follows: 



To enhance the commonality and correlation, the first two feedforward fully-connected layers (FC1 

and FC2) of the two feature extraction sections shared weights, which meant they shared the same 

underlying feature extraction methods. In order to evaluate the necessity of sharing weights, we 

compared the network without shared weights with the results of this study, as shown in Table 5. The 

results showed that the shared weight could effectively reduce the prediction error. The two feature 

extraction sections also had independent feedforward fully-connected layers (FC3 and FC4), which 

further enhanced the ability of the network to recognize the effective and specific information 

(difference) of global features and local features. After FC3 and FC4, the global and local features 

contained in the two point clouds were represented as a N * 512 and N * 128-dimensional vectors, 

respectively. We concatenated the two vectors to form an N * 640-dimensional vector. This vector 

contained both the global features of the model point cloud and the local features of the query point 

cloud, which helped the network further integrate the correlation between the two features. The last 

part of the network was feedforward fully-connected layers (FC5 and FC6), which were used to yield 

hemodynamic results. 

Table 5. Comparison of MRE from network with or without shared weights* 

Hemodynamic Velocity field Pressure field 

Without shared weights 16.37±5.43 13.42±5.21 

With shared weights 9.77±3.86 7.61±1.99 

* The MRE is calculated according to the hemodynamic prediction values of preoperative aorta and 

superior aortic branch artery. 

For other details of the network, we added a Maxpooling layer as a symmetric function in the feature 

extraction part of the model point cloud, which could aid in resolving the disorder of the input point 

cloud37. We used the mean absolute error as the regression loss function24,61. We used the Adam 

optimizer with specific parameters: learning rate = 0.001, ϵ = 0.001, ρ1 = 0.9, ρ2 = 0.999, and δ = 

1E−862. The 3D deep learning network was trained by TensorFlow (v2.0.0rc, Python 3.6 on a Nvidia 

GeForce GTX 1080 Ti GPU). The preoperative and postoperative datasets needed to be separately 

trained as inputs for the network. During the training process, we saved the optimal network 

parameter configurations for both training sets. After that, while only inputting the spatial 

coordinates in the test set, the network could recognize the hemodynamic prediction output of query 

point cloud. 



Definition of error functions 

Referring to the evaluation criteria of previous studies, NMAE29 and MRE28 were defined as error 

functions to evaluate the accuracy of deep learning network predictions based on the CFD results, as 

shown in equation (1) and equation (2): 

   

                 (1) 

                       (2) 

N represented the number of selected query points. i was the spatial sequence of the 3D point cloud. 

Pi and  represented the flow velocity or pressure value at a certain point calculated by CFD and 

deep learning, respectively.  and  represented the maximum and minimum 

magnitude of the corresponding hemodynamic parameters among all points in the selected area, 

respectively. NMAE can characterize the error of the deep learning prediction result relative to the 

true value of the overall flow field (CFD result). MRE can characterize the error of the deep learning 

prediction value relative to the true value at all query points of the model. The definition of the error 

function draws on previous studies. The comparative analysis results are shown in Supplementary 

Table 1. In this study, ERR is designed to evaluate the velocity or pressure fields represented by 

point clouds. For other parameters (such as FFR calculated by pressure field, etc.), new ERR should 

be defined according to the specific situation. In these definitions, each of the points of different 

cardiovascular parts can affect ERR with the same weight. However, the number of points and the 

magnitude of velocity and pressure must have a great difference among aorta, coronary arteries, and 

bypass graft. In order to avoid the impact of this variation on the evaluation results, local ERR (The 

model was divided into several parts, and the ERR value of a certain part, such as the left anterior 

descending branch, was called local ERR.) values were obtained to assess the prediction accuracy on 

small-to-large parts. We calculated the ERR values of the proximal and distal end of left anterior 

descending artery (LAD), graft, right coronary artery (RA), the left circumflex branch (LCX), the 

aorta and superior aortic branch artery, respectively. Regarding the LAD, the proximal and distal 

ends were divided by stenosis. When there were multiple stenosis in the LAD branch, the stenosis 

with highest degree was selected. 



Statistics and reproducibility 

All ERR calculations were based on the velocity or pressure results of 100 models in the test set. The 

definition of query point cloud number (i) was defined in equation (1) and equation (2). This study 

took the average value of ERR of 100 models. The standard deviation was used to calculate the error 

bars. 

Data availability  

Data analyzed during the current study are available from the corresponding author upon reasonable 

request. Restrictions apply to the sharing of patient data that supports the findings of this study. With 

the approval of the Institutional Ethics Committee of People's Hospital, the patient's data can be 

authorized for use by qualified researchers. 

Code availability 

All source code described in this project can be accessed at: https://doi.org/10.5281/zenodo.4287103



 

References 

1. Wallace, D. & Wallace, R. Early Mortality from Ischemic Heart Disease (Coronary Heart Disease). in 

Right-to-Work Laws and the Crumbling of American Public Health 61–69 (2018). 

2. Tuppo, E. et al. Changes in coronary heart disease incidence and mortality in New Jersey 2000-2017. 

https://doi.org/doi:10.7282/t3-fzmb-8d61 (2019). 

3. Maddox, T. M. et al. Nonobstructive coronary artery disease and risk of myocardial infarction. JAMA - J. 

Am. Med. Assoc. 312, 1754-1763 (2014). 

4. Saka, Y. et al. Clinical comparison study between a newly developed optical-based fractional flow 

reserve device and the conventional fractional flow reserve device. Coron. Artery Dis. Publish Ahead of 

Print, (2020). 

5. Wong, C. et al. Validation of a Novel ‘Wireless’ Fractional Flow Reserve Measurement During Coronary 

Angiography. Hear. Lung Circ. 27, S487 (2018). 

6. Wang, W. et al. A Fast-Fractional Flow Reserve Simulation Method in A Patient with Coronary Stenosis 

Based on Resistance Boundary Conditions. Comput. Model. Eng. Sci. 116, 163–173 (2018). 

7. Yue Feng, Y. L. Study on the Influence of Right Atrial Pressure on the Numerical Calculation of 

Fractional Flow Reserve. Mol. Cell. Biomech. 16, 31–32 (2019). 

8. Zhang, Z., Li, K. & Tian, J. Efficacy and safety outcomes of fractional flow reserve in guiding clinical 

therapy of non-ST-segment elevation myocardial infarction compared with angiography alone in elderly 

Chinese patients. Clin. Interv. Aging. 11, 1751–1754 (2016). 

9. Shin, J. et al. Fractional Flow Reserve Guided Coronary Revascularization in Lung Transplant Recipients. 

J. Hear. Lung Transplant. 38, S323 (2019). 

10. Squiers, J. J. & Mack, M. J. Coronary artery bypass grafting-fifty years of quality initiatives since 

Favaloro. Ann. Cardiothorac. Surg. 7, 516–520 (2018). 

11. Amin, S., Werner, R. S., Madsen, P. L., Krasopoulos, G. & Taggart, D. P. Intraoperative Bypass Graft 

Flow Measurement With Transit Time Flowmetry: A Clinical Assessment. Ann. Thorac. Surg. 106, 532–538 

(2018). 



12. Handa, T., Orihashi, K., Nishimori, H. & Yamamoto, M. Maximal blood flow acceleration analysis in the 

early diastolic phase for aortocoronary artery bypass grafts: a new transit-time flow measurement predictor of 

graft failure following coronary artery bypass grafting. Surg. Today 46, 1325–1333 (2016). 

13. Zhuang, B., Wang, S., Zhao, S. & Lu, M. Computed tomography angiography-derived fractional flow 

reserve (CT-FFR) for the detection of myocardial ischemia with invasive fractional flow reserve as reference: 

systematic review and meta-analysis. Eur. Radiol. 30, 712–725 (2020). 

14. Westra, J. et al. Diagnostic performance of in‐procedure angiography‐derived quantitative flow reserve 

compared to pressure‐derived fractional flow reserve: the FAVOR II Europe‐Japan study. J. Am. Heart Assoc. 

7, e009603 (2018). 

15. Zhang, M. et al. Haemodynamic effects of stent diameter and compaction ratio on flow-diversion 

treatment of intracranial aneurysms: a numerical study of a successful and an unsuccessful case. J. Biomech. 

58, 179–186 (2017). 

16. Zhang, M., Anzai, H., Chopard, B. & Ohta, M. Towards the patient-specific design of flow diverters 

made from helix-like wires: an optimization study. Biomed. Eng. Online 15, 159 (2016). 

17. Hoi, Y. et al. Effects of arterial geometry on aneurysm growth: three-dimensional computational fluid 

dynamics study. Journal of neurosurgery. 101, 676-681 (2004). 

18. Qiao, A., Liu, Y., Li, S. & Zhao, H. Numerical simulation of physiological blood flow in 2-way coronary 

artery bypass grafts. J. Biol. Phys. 31, 161–182 (2005). 

19. Fu, Y., Qiao, A., Yang, Y. & Fan, X. Numerical Simulation of the Effect of Pulmonary Vascular 

Resistance on the Hemodynamics of Reoperation after Failure of One and a Half Ventricle Repair. Front. 

Physiol. 11, 207 (2020). 

20. Taylor, C. A., Fonte, T. A. & Min, J. K. Computational Fluid Dynamics Applied to Cardiac Computed 

Tomography for Noninvasive Quantification of Fractional Flow Reserve : Scientific Basis. J. Am. Coll. 

Cardiol. 61, 2233–2241 (2013). 

21. Li, G. et al. Pulse-Wave-Pattern Classification with a Convolutional Neural Network. Sci. Rep. 9, 1–11 

(2019). 

22. Huang, G. B., Lee, H. & Learned-Miller, E. Learning hierarchical representations for face verification 

with convolutional deep belief networks. 2012 IEEE Conference on Computer Vision and Pattern Recognition. 

2518–2525 (2012). 



23. Simonyan, K. & Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. 

arXiv:1409.1556 (2014). 

24. Jha, D. et al. Enhancing materials property prediction by leveraging computational and experimental data 

using deep transfer learning. Nat. Commun. 10, 1–12 (2019). 

25. Varadarajan, A. V et al. Predicting optical coherence tomography-derived diabetic macular edema grades 

from fundus photographs using deep learning. Nat. Commun. 11, 1–8 (2020). 

26. Coenen, A. et al. Diagnostic accuracy of a machine-learning approach to coronary computed 

tomographic angiography–based fractional flow reserve: result from the MACHINE consortium. Circ. 

Cardiovasc. Imaging 11, e007217 (2018). 

27. Wang, Z.-Q. et al. Diagnostic accuracy of a deep learning approach to calculate FFR from coronary CT 

angiography. J. Geriatr. Cardiol. JGC 16, 42 (2019). 

28. Guo, X., Li, W. & Iorio, F. Convolutional neural networks for steady flow approximation. In 

Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining, 

481–490 (2016). 

29. Liang, L., Mao, W. & Sun, W. A feasibility study of deep learning for predicting hemodynamics of 

human thoracic aorta. J. Biomech. 99, 109544 (2020). 

30. Kutz, J. N. Deep learning in fluid dynamics. J. Fluid Mech. 814, 1–4 (2017). 

31. Miyanawala, T. P. & Jaiman, R. K. An efficient deep learning technique for the Navier-Stokes equations: 

Application to unsteady wake flow dynamics.  arXiv:1710.09099 (2017). 

32. Wang, Z. et al. Model identification of reduced order fluid dynamics systems using deep learning. Int. J. 

Numer. Methods Fluids 86, 255–268 (2018). 

33. Lye, K. O., Mishra, S. & Ray, D. Deep learning observables in computational fluid dynamics. J. Comput. 

Phys. 401, 109339 (2020). 

34. Lee, S. & You, D. Prediction of laminar vortex shedding over a cylinder using deep learning. 

arXiv:1712.07854 (2017). 

35. Graham, L. N., Ellison, K., Herman, B. K. & Riddell, C. S. Visualization and storage algorithms 

associated with processing point cloud data. (2010). 

36. You, H., Feng, Y., Ji, R. & Gao, Y. Pvnet: A joint convolutional network of point cloud and multi-view 



for 3d shape recognition. in Proceedings of the 26th ACM international conference on Multimedia 1310–1318 

(2018). 

37. Qi, C. R., Su, H., Mo, K. & Guibas, L. J. Pointnet: Deep learning on point sets for 3d classification and 

segmentation. in Proceedings of the IEEE conference on computer vision and pattern recognition 652–660 

(2017). 

38. Pijls, N. H. et al. Measurement of fractional flow reserve to assess the functional severity of 

coronary-artery stenoses. N. Engl. J. Med. 334, 1703 (1996). 

39. Lee, S. & You, D. Data-driven prediction of unsteady flow over a circular cylinder using deep learning. J. 

Fluid Mech. 879, 217–254 (2019). 

40. Duriez, T., Brunton, S. L. & Noack, B. R. Machine learning control-taming nonlinear dynamics and 

turbulence Ch. 6 (Springer, Cham. Press, Switzerland, 2017). 

41. Ling, J., Kurzawski, A. & Templeton, J. Reynolds averaged turbulence modelling using deep neural 

networks with embedded invariance. J. Fluid Mech. 807, 155–166 (2016). 

42. Layton, W. & Lenferink, H. W. J. A multilevel mesh independence principle for the Navier–Stokes 

equations. SIAM J. Numer. Anal. 33, 17–30 (1996). 

43. Frey, P.J. & Alauzet, F. Anisotropic mesh adaptation for CFD computations. Comput. Methods Appl. 

Mech. Eng. 194, 5068–5082 (2005). 

44. Boutsianis, E. et al. CFD and PTV Steady Flow Investigation in an Anatomically Accurate Abdominal 

Aortic Aneurysm. J. Biomech. Eng. 131, 011008-011023 (2008). 

45. Vinoth, R. et al. Steady and Transient Flow CFD Simulations in an Aorta Model of Normal and Aortic 

Aneurysm Subjects. in The Proceedings of the International Conference on Sensing and Imaging. 29–43 

(2019). 

46. Martin, J. D. CFD Analysis Comparing Steady Flow and Pulsatile Flow Through the Aorta and its Main 

Branches. ASME 2016 International Mechanical Engineering Congress and Exposition. 3, 

IMECE2016-67155, V003T04A064 (2016) 

47. Itu, L. et al. A machine-learning approach for computation of fractional flow reserve from coronary 

computed tomography. J. Appl. Physiol. 121, 42–52 (2016). 

48. Tesche, C. et al. Coronary CT angiography–derived fractional flow reserve: machine learning algorithm 



versus computational fluid dynamics modeling. Radiology 288, 64–72 (2018). 

49. Radaelli, A. G. et al. Reproducibility of haemodynamical simulations in a subject-specific stented 

aneurysm model—a report on the Virtual Intracranial Stenting Challenge 2007. J. Biomech. 41, 2069–2081 

(2008). 

50. Berg, P. et al. Multiple aneurysms anatomy challenge 2018 (MATCH): phase I: segmentation. 

Cardiovasc. Eng. Technol. 9, 565–581 (2018). 

51. Ge, X. et al. Model-based analysis of the sensitivities and diagnostic implications of FFR and CFR under 

various pathological conditions. Int. j. numer. method. biomed. eng. https://doi.org/10.1002/cnm.3257 (2019) 

52. Li, B., Wang, W., Mao, B. & Liu, Y. A Method to Personalize the Lumped Parameter Model of Coronary 

Artery. Int. J. Comput. Methods 16, 1842004 (2019). 

53. Wang, W. et al. Numerical Simulation of Instantaneous Wave-Free Ratio of Stenosed Coronary Artery. 

Int. J. Comput. Methods 16, 1842009 (2019). 

54. Roy, S., Gupta, A., Nanrah, B. K., Verma, M. & Saha, R. Morphometric study of left coronary artery 

trunk in adult human cadavers: a study on the eastern region population. J. Clin. diagnostic Res. JCDR 8, 7 

(2014). 

55. Kassab, G. S. & Fung, Y.-C. B. The pattern of coronary arteriolar bifurcations and the uniform shear 

hypothesis. Ann. Biomed. Eng. 23, 13–20 (1995). 

56. Malkawi, A. H. et al. Morphology of aortic arch pathology: implications for endovascular repair. J. 

Endovasc. Ther. 17, 474–479 (2010). 

57. Canaud, L. et al. Proximal fixation of thoracic stent-grafts as a function of oversizing and increasing 

aortic arch angulation in human cadaveric aortas. J. Endovasc. Ther. 15, 326–334 (2008). 

58. Campens, L. et al. Reference values for echocardiographic assessment of the diameter of the aortic root 

and ascending aorta spanning all age categories. Am. J. Cardiol. 114, 914–920 (2014). 

59. Hager, A. et al. Diameters of the thoracic aorta throughout life as measured with helical computed 

tomography. J. Thorac. Cardiovasc. Surg. 123, 1060–1066 (2002). 

60. Febina, J., Sikkandar, M. Y. & Sudharsan, N. M. Wall Shear Stress Estimation of Thoracic Aortic 

Aneurysm Using Computational Fluid Dynamics. Comput. Math. Methods Med. (2018). 

doi:10.1155/2018/7126532 

https://doi.org/10.1002/cnm.3257


61. Chai, T. & Draxler, R. R. Root mean square error (RMSE) or mean absolute error (MAE)?–Arguments 

against avoiding RMSE in the literature. Geosci. Model Dev. 7, 1247–1250 (2014). 

62. Kingma, D. P. & Ba, J. Adam: A Method for Stochastic Optimization. Comput. Sci. 

https://doi:10.1063/1.4902458(2014). 

https://doi:10.1063/1.4902458


 

Acknowledgements 

This research is partially supported by the Creation of a development platform for 

implantable/wearable medical devices by a novel physiological data integration system of the 

Program on Open Innovation Platform with Enterprises, Research Institute and Academia (OPERA) 

from the Japan Science and Technology Agency (JST). This work is also supported by the JSPS 

KAKENHI with the Grant Number JP18K18355, the Grant-in-Aid [A] (No16H01805), the 

Grant-in-Aid [C] (17K01444), the Grant-in-Aid [C] (19K04163), the National Natural Science 

Foundation of China (11772015), and the National Natural Science Foundation of China (11832003, 

11772016). 

Author contributions 

G.L., H.W., Y.L., and A.Q. acquired the data. G.L., H.W., M.Z., S.T., A.Q., M.O., Y.L., and H.A. 

created and designed this study; G.L., H.W., M.Z., S.T., and H.A. performed the experiments and 

analyzed the data. All of the authors discussed and co-authored the manuscript. The contributions of 

G.L. and H.W. were equal.  

Competing interests 

The authors declare no competing interests. 



 

 

 

 

 

 

 

 

Prediction of 3D Cardiovascular Hemodynamics before and after Coronary Artery Bypass 

Surgery via Deep Learning 

Gaoyang Li et al. 

Supplementary Information 



 

Supplementary Results 

Supplementary Fig. 1 Learning curve. a-b are the learning curves of the pre- and post-velocity field 

datasets. c-d are the learning curves of the pre- and post-pressure field datasets. For velocity, the 

learning curve reaches a minimum when Epoch is about 50K. For pressure, the learning curve 

reaches a minimum when Epoch is about 40K. 

 

Supplementary Discussion 

Comparison against Previous Deep Learning Approaches 

We reviewed studies using deep learning or machine learning for prediction of flow fields or clinical 

parameters related to CHD treatment (e.g., FFR), as shown in Supplementary Table 1. Itu's machine 

learning method was only suitable for the calculation of FFR value1, and its application range was 

extremely limited. Lee's convolutional neural network could be used for vortex flow prediction in the 

2D plane2, which might lead to loss of information (such as the flow field component perpendicular 

to the 2D plane). Guo's deconvolution network is only suitable for 3D regular and simple flow field3. 



Because the network structure is relatively simple, the above studies all need a large number of data 

samples to support in order to achieve high prediction accuracy. Although Liang realizes the internal 

hemodynamic prediction of the ideal thoracic aortic model4, the spatial resolution of its samples is 

still low, which could not accurately characterize the geometric characteristics of complex 

cardiovascular system. Liang's network only accepts the input data with prefix array-size. This 

means, patient geometry should be normalized into template (fixed number of meshes). Then, if the 

geometry cannot fit into that template, Liang's network cannot accept that input. Under the premise 

of more extensive information, our deep learning method uses limited data to achieve prediction 

accuracy similar to previous studies. However, our prediction objects are far more complex. Our 

network can predict the flow on any kind of geometry owing to using the point cloud format. Even 

the number of point cloud (nodes) varies, our network can accept that unfixed input. Combined with 

the universality analysis of the network, our deep learning method has many advantages. 

 

Supplementary Table 1 Comparison analysis of our deep learning method against previous studies 

Network or method Prediction output Data set size Input data format 
Error function or 

accuracy 

Our Deep Learning 

Method 

3D Patient Personalized 

Cardiovascular 

Hemodynamics  

1100 
High resolution 

flexible point cloud 

NMAE<6.5%, 

MRE<10% 

Itu's Machine Learning 

Approach1 
FFR Value 12,000 

Geometric 

parameters 

Accuracy= 

99.7% 

Lee's Adversarial and 

Convolutional Neural 

Networks2 

2D Vortex Flow 500000 
Grid cells with fixed 

number 
32.8%<Error<1% 

Guo's Deconvolution 

Network3 

3D Regular and Simple 

Flow 
400000 

Low resolution 

pixels with fixed 

number 

MRE<3% 

Liang's DNNs4  
3D Ideal Thoracic Aorta 

Hemodynamics 
729 

Low resolution 

meshes with fixed 

number 

NMAE<6.5% 

 

Supplementary Method 

Model geometric parameters modification 

In order to visually show the difference between the models in the training set and the test set, and to 

clearly show the modification of the model's geometric structure, we selected a model from the training 



set and the test set, and showed the modification results of its geometric structure, as shown in 

Supplementary Fig. 2. 

 



 

Supplementary Fig. 2 Examples of models in the training and test sets. Examples of models in the 

training and test sets. A is the original model. B is the corresponding modified model. a: overall 

model; b: ascending aorta and aortic arch angulation; c: descending aorta; d: coronary artery details 

(LAD and LCX); e: stenosis. All model modifications follow the provisions of Table 3 in the main 

text. 

Simulated operation of CABG and CFD simulation 

Among these patient-specific models, except for a few patients who had undergone CABG surgery, 

the vast majority of patient data had not undergone CABG surgery. Therefore, virtual CABG bypass 

surgery was performed on these models. According to the recommendations of existing patients and 



doctors, we chose the left internal mammary artery (LIMA) as the bypass graft. The diameter of the 

blood vessel was 2 mm following the advice of the doctors. In Supplementary Fig. 3, we chose one 

of the models as an example to show before and after CABG surgery. The operation of virtual 

surgery was done using the commercially available software Mimics (Materialize NV, BE). Before 

generating the computational models, the reconstructed 3D models needed to be preprocessed, 

including surface smoothing and inlet/outlets processing by using the commercially available 

software Geomagic Wrap (3D system, US). After model preprocessing, tetrahedron-dominant mesh 

computational models were generated, with maximal sizes of 1.6 mm for the element, for each 

patient model before and after the CABG procedure using ANSYS-Meshing (ANSYS, Canonsburg, 

USA). To better capture the flow behaviors, close to the vascular wall, five prismatic boundary 

layers were generated with a growing ratio of the prism thickness at 1.2 mm5-8.  

The vascular wall was assumed to be rigid and a non-slip condition was assigned at all boundaries. 

We assumed the blood to be an incompressible Newtonian fluid, with density and viscosity of 1050 

kg/m3 and 0.0035 Pa s, respectively, and performed steady flow simulations using solver 

ANSYS-CFX (ANSYS, Canonsburg, USA). Since the FFR calculation needed to be in the state of 

maximum congestion, a peak wave velocity of 1.125 m/s was imposed as the boundary condition at 

the inlet9. And for the outlets, a fixed static reference zero pressure was applied. The convergence 

criteria for simulations were chosen as 10-4 (Root Mean Square) for the normalized continuity, 

pressure, and velocity residuals. Upon convergence of each simulation, we extracted four groups of 

results including preoperative velocity fields and pressure distributions and postoperative velocity 

fields and pressure distributions and saved them as a CSV file, for further processing and 

construction of the dataset to be used in deep learning. 

 



 

Supplementary Fig. 3 Simulated operation of CABG. 

Mesh Independence Test 

In this study, the number of nodes ranged from 2.83 to 3.01 million in total across different cases. In 

order to reduce errors and make the simulation results stable and reliable, a mesh independence test 

of computational grids was performed. As shown in Supplementary Fig. 4, the relationship between 

the mass-flow of LIMA and the number of grids. When the number of meshes exceeds one million, 

the calculation results can be considered to be stable. Therefore, it is confirmed that the number of 

grids set in this study was appropriate. 

 



Supplementary Fig. 4 Mesh independence test. It confirms that the mesh setting of this study is 

suitable. 
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Abstract 

Owing to the diversity of pulse-wave morphology, pulse-based diagnosis is difficult, especially 

pulse-wave-pattern classification (PWPC). A powerful method for PWPC is a convolutional neural network 

(CNN). It outperforms conventional methods in pattern classification due to extracting informative abstraction 

and features. For previous PWPC criteria, the relationship between pulse and disease types is not clear. In 

order to improve the clinical practicability, there is a need for a CNN model to find the one-to-one 

correspondence between pulse pattern and disease categories. In this study, five cardiovascular diseases (CVD) 

and complications were extracted from medical records as classification criteria to build pulse data set 1. Four 

physiological parameters closely related to the selected diseases were also extracted as classification criteria to 

build data set 2. An optimized CNN model with stronger feature extraction capability for pulse signals was 

proposed, which achieved PWPC with 95% accuracy in data set 1 and 89% accuracy in data set 2. It 

demonstrated that pulse waves are the result of multiple physiological parameters. There are limitations when 

using a single physiological parameter to characterise the overall pulse pattern. The proposed CNN model can 

achieve high accuracy of PWPC while using CVD and complication categories as classification criteria. 

Introduction 

Pulse waves contain a large quantity of pathological and physiological information1,2. Pulse-wave 

characteristics are closely related to diseases (hypertension, type 2 diabetes, atherosclerosis, etc.), especially 

cardiovascular diseases (CVD) and physiological parameters [pulse-wave velocity, cardio-ankle vascular 

index (CAVI), blood pressure, etc.]3,4. Therefore, pulse analysis is extensive used in cardiovascular function 

assessment and non-invasive early diagnosis of cardiovascular disease and related complications5. TCPD 

(Traditional Chinese Pulse Diagnosis) refers to the diagnosis of diseases via traditional Chinese medical 

practices by feeling the change in pulse at the patient’s wrist, which is highly dependent on the doctor’s skill 

and experience6. Computer-aided analysis has made some achievements in pulse diagnosis, especially in 

pulse-wave-pattern classification (PWPC). For example, Wang et al. divided 407 sets of pulse data into five 

pulse patterns by using a Bayesian network based on six pulse parameters: depth, width, length, frequency, 

rhythm and strength (84% successful classification rate)7. Moreover, Xu et al. divided 320 sets of pulse data 
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into 16 pulse patterns by using a fuzzy neural network based on differences in pulse shapes, widths, positions 

and some specific local parameters (90% successful classification rate)8. However, the diverse morphology of 

pulse waves remains a difficulty for PWPC, which may lead to problems such as waveform local time shifting, 

as shown in Figure 19. In addition, the classification criteria of these studies are based on TCPD theory, which 

means that a pulse pattern may correspond to a variety of disease categories, as shown in Figure 110. It also 

leads to a decrease in the clinical practicality of pulse-based diagnosis. Thus, in this study, we selected new 

classification criteria—that is, the CVD and complication categories and the clinical physiological 

parameters—with the aim of developing a practical PWPC method with a high classification rate. 

 

Figure 1. According to previous studies’ classification criteria, we show five pulse waves that exhibit a taut 

pulse pattern, which involves a pulse with a high second peak (local time shifting), as follows: (a) typical taut 

pulse, (b) taut pulse with high tidal wave and (c) taut pulse with tidal wave merged with percussion wave.9 

With the help of medical doctors, (d) and (e) were extracted from our database. Although a–e all feature a taut 

pulse pattern, there are still differences in some local waveform characteristics. In addition, the subject of (d) 

suffered from hyperlipidaemia, while the subject of (e) suffered from atherosclerosis. This shows that, under 

the previous classification criteria, a single pulse pattern might correspond to many disease categories. 

 

With the research and development of deep learning, various of neural network structures have been designed 

for signal processing. Recurrent neural network (RNN)11, based on its internal memory, is used to process 

arbitrary time series input sequence such as non-segmented handwriting recognition, speech recognition, etc. 

Long short term memory (LSTM)12, as a variant of RNN, can effectively prevent the occurrence of gradient 

vanishing from processing time series signals. In recent years, remarkable achievements have been made in 

the field of pattern classification via the use of convolutional neural networks (CNNs) as deep learning 



structures13,14,15,16. CNNs provide an end-to-end learning model. The trained CNNs by the gradient descent 

method can learn the characteristics of input data and further complete the pattern classification. CNNs have 

strong ability of feature learning and pattern classification. The main reason is that the features of the lower 

layers are derived from the partial information and convolution kernel with sharing weights from the upper 

layer. CNNs have been applied in the classification of human physiological signal patterns. Based on a 

34-layer CNN, Rajpurkar et al. classified the electrocardiogram (ECG) signals into 14 types17. Moreover, 

Rubin et al. performed heart-sound recordings based on deep CNN and Mel-frequency cepstral coefficients18. 

These studies used CNN to achieve pattern classification of relevant physiological signals and achieved higher 

accuracy than the diagnostic results of experienced physicians. Furthermore, Hu et al. used CNN to divide 

pulse waves into two types: health and subhealth19. In the present study, in view of the large amount of 

pathological and physiological information contained in pulse signals, we collected the required data under the 

guidance of the doctor and established two data sets based on either CVD/complication categories or 

physiological parameters. We proposed an optimised CNN model for PWPC based on these two data sets. The 

purpose of this study was to identify a practical and efficient classification criterion for PWPC based on CNN, 

which contributed to non-invasive, practical and effective diagnosis of CVDs and related complications. 

Results 

The average pulse waves of each pattern in the two data sets are shown in Figure 2.  



 

Figure 2. Average pulse-wave patterns in data set 1 (a) and data set 2 (b). Abbreviation Represents Pulse 

Wave Patterns: H1-Healthy Control Group in Data Set 1; Hn- hypertension; At-atherosclerosis; 

Ha-hyperlipidaemia; Td-type 2 diabetes; HCA-Hypertension complicated by atherosclerosis; H2-Healthy 

Control Group in Data Set 2; BP-blood pressure; baPWV- brachial-ankle pulse wave velocity; BV-blood 

viscosity. 

We showed the learning curves of data set 1 and data set 2 respectively to evaluate their PWPC performance 

on the proposed CNN model, as shown in Figure 3. For cost-value curve, the decline rate of data set 1 was 

significantly higher than that of data set 2. For training error and test error, the minimum value of data set 1 

was smaller than that of data set 2. Especially test error, data set 1 (When epoch was 90, the minimum test 

error was 0.08. Epoch was the number of iterations in CNN pattern classification) was much smaller than data 

set 2 (When epoch was 100, the minimum test error was 0.34). With the same proposed CNN, the six pulse 



patterns in data set 1 showed higher calculation efficiency and feature expression ability than those five 

patterns in data set 2. 

 

Figure 3. Learning curve in data set 1 (a) and data set 2 (b). 

 

Table 1 shows the overall values of the evaluation parameters in the two data sets. The accuracy and other 

evaluation parameters of PWPC in data set 1 (overall accuracy = 0.95) were higher than those in data set 2 

(overall accuracy = 0.89). Tables 2 and 3 show the details for each pattern in the two data sets separately. 

Pulse-wave patterns representing healthy subjects (H1 and H2) could be identified with high precision 

(precision H1 = 1, recall H1 = 0.99; precision H2 = 0.97, recall H2 = 0.97). The HCA, as the pulse pattern of 

complications, had the lowest classification rate in data set 1 (precision HCA = 0.89, recall HCA = 0.91). In 

addition, the classification performance of other pulse patterns in data set 1 was higher than that in data set 2. 



Table 1. PWPC evaluation of per pulse patterns in two data sets 

Data set  Overall accuracy Overall precision Overall recall Overall F-measure 

Data set 1 0.95 0.95 0.95 0.95 

Data set 2 0.89 0.89 0.89 0.89 

 

Table 2. PWPC evaluation of per pulse patterns in data set 1 

Pulse pattern Precision Recall F-measure 

H1 1 0.99 0.99 

Hn 0.94 0.93 0.94 

At 0.90 0.94 0.92 

Ha 1 0.99 0.99 

Td 0.96 0.93 0.94 

HCA 0.89 0.91 0.90 

 

Table 3. PWPC evaluation of per pulse patterns in data set 2 

Pulse pattern Precision Recall F-measure 

H2 0.97 0.97 0.97 

BP 0.89 0.89 0.89 

CAVI 0.82 0.84 0.83 

baPWV 0.84 0.87 0.85 

BV 0.95 0.89 0.92 

 

 

To further assess the PWPC result of the proposed CNN model, the two data sets were put into different 

neural networks models for PWPC. Table 4 shows the accuracy of PWPC with those different models. It 

details network methods, classification criteria, number of subjects, and the accuracy. It demonstrated that 

compared with other neural networks or other CNN structures, our proposed CNN model achieved higher 

accuracy in PWPC under the new classification criteria, which also meant stronger feature extraction ability 

for pulse signals. 

 

 

 



Table 4. PWPC accuracy of different methods 

Network  Method Classification criteria Number of subjects Accuracy 

The proposed 

CNN model 

CNN CVD and complications 412 0.95 

CNN Physiological parameters 412 0.89 

LetNet20 CNN CVD and complications 412 0.69 

CNN Physiological parameters 412 0.63 

AlexNet14 CNN CVD and complications 412 0.73 

CNN Physiological parameters 412 0.70 

VGG-Net15 CNN CVD and complications 412 0.81 

CNN Physiological parameters 412 0.79 

Wang’s 

network7 

Bayesian 

Network 
Based on TCPD 407 0.84 

Xu’s network8 Fuzzy Neural 

Network 
Based on TCPD 320 0.90 

 

To further analyse the causes of errors in pattern classification, we determined the confusion matrix of the two 

data sets, as shown in Figure 4. The cause of errors in data set 1 was mainly the erroneous classification of the 

four pulse patterns of Hn, At, HCA and Td. In data set 2, with the exception of the control group (H2), the 

remaining four pulse patterns (BP, CAVI, baPWV and BV) were found to interfere with each other and have 

higher error rates. 

 

Figure 4. The confusion matrices of data set 1 (a) and data set 2 (b). The confusion matrix is an intuitive 

method for evaluating the results of pattern classification CNN models. The real categories (rows) and 

predicted categories (columns) of the classification results can be read directly. For example, in matrix (a), 



there were 70 (65 + 5) pulse waves which really belonged to the Hn pattern (the second row), while the CNN 

model predicted 69 (65 + 1 + 1 + 2) pulse waves in the Hn pattern (the second column). 

Discussion 

In this study, CVD and associated complications as well as related physiological parameters were extracted, 

which were used as classification criteria. According to the new classification criteria, we screened the 

subjects’ pulse waves and created data set 1 and data set 2, respectively. An optimised CNN model was 

proposed for PWPC. It achieved the classification of six pulse patterns in data set 1 with an accuracy of 95% 

and the classification of six pulse patterns in data set 2 with an accuracy of 89%. The main contributions of 

this study are as follows: 

1. Two pulse wave data sets were created, which contained a large amount of physiological and 

pathological information of subjects. 

2. New classification criteria and optimized CNN model were proposed, which achieves higher accuracy 

than previous studies7,8,19,21,22. 

This study demonstrates that CVD and complications are practical and efficient classification criteria, 

enabling the optimised CNN model to achieve high accuracy for PWPC. 

We observed that the classification errors in data set 1 were mainly due to the erroneous classification of the 

Hn, At and HCA patterns. This was due to the simultaneous occurrence of hypertension and atherosclerosis on 

behalf of HCA. There must be some similar pulse characteristics between HCA and the other two diseases, 

which indicates that, in order to ensure that the characteristics of the different pulse patterns are typical, the 

selected data specimen must exclude the effect of complications at the same time. In addition, in data set 1, Td 

was also partially misclassified as Hn (n = 1), At (n = 3) and HCA (n = 1). Previous studies showed that type 2 

diabetes could increase the risk and mortality of CVD, and they had similarities in the damage to the 

cardiovascular system23,24,25. Thus, there might have been similar pulse waveform characteristics between Td 

and Hn, At, HCA patterns, which led to classification errors. 

In data set 2, four pulse patterns (BP, CAVI, baPWV and BV) were found to interfere with each other in 

pattern classification. Previous studies showed that the effect of a single physiological parameter on pulse 

waveform was mainly reflected in the change of some local characteristics26,27,28. The pulse waveform 

characteristics with the same value of one specific physiological parameter would change as a result of the 

differences of other physiological parameters, as shown in Figure 5. It may have led to the errors of pattern 

classification in data set 2. Our study showed that the pulse-wave was the result of multiple physiological 

parameters. There are clearly limitations associated with using a single physiological parameter in 



characterising the overall pulse pattern. Disease was the result of multiple physiological parameters, which 

might explain the higher classification accuracy in data set 1. 

 

Figure 5. The pulse-wave form baPWV pulse pattern with the different baPWV and different CAVI. Pulse 

waves from six subjects were selected. 

This study had several limitations. The most important one was the relatively limited number of subjects. 

Limited by the number of subjects, the effects of some physiological information such as age, height and 

weight on pulse waveform were ignored, which inevitably led to errors in pattern classification1. However, in 

our study, the number of pulse waves in each pulse pattern was several times that in some previous studies22,29. 

To some extent, the findings indicated that each of our patterns could represent the typical pulse 

characteristics. In addition, this study focused on the classification criteria of pulse patterns. For this purpose, 

we used the same CNN model to classify two data sets. Regarding the low classification rate of data set 2, we 

did not explore whether it could be improved by optimising the architecture of the CNN model. 

Conclusions 

In this study, we established pulse wave data set 1 and data set 2 based on the classification criteria: CVD 

categories and related physiological parameters. CNN was used to extract features from two data sets and to 

achieve PWPC with high accuracy. The main contribution of this study is to propose the new classification 

criteria for PWPC and construct a matching CNN model. The optimized CNN model achieved PWPC with 

95% accuracy in data set 1 and 89% accuracy in data set 2. This study demonstrated that pulse waves are the 

result of multiple physiological parameters, so there are limitations when using a single physiological 



parameter to characterize the overall pulse pattern. The proposed CNN model can achieve high accuracy 

PWPC while using CVD and complication categories as classification criteria, which contributes to 

non-invasive, practical and effective diagnosis of CVD and associated complications. 

Method 

Data collection 

The original pulse wave data were from the “Study on Evaluation Method of Cardiovascular System Based on 

Non-invasive Detection of Blood Pressure and Pulse-Wave of Limbs30”, which recruited 412 subjects and 

determined their physiological parameters and more than 12,000 cycles of pulse waves. The pulse and blood 

pressure signal measuring device was Fukuda VS-1500A. In addition, the subjects’ brachial ankle pulse-wave 

velocity (baPWV) and blood viscosity were collected. All subjects were registered at Beijing University of 

Technology Hospital, and information on their diseases was collected through the subjects’ medical records. 

The study with its experimental protocols and relevant details was approved by the Institutional Ethics 

Committee of Beijing University of Technology and Tohoku University. All experiments were performed in 

accordance with relevant guidelines and regulations. We explained the content of the study to the subjects in 

detail, and on this basis, the subjects signed the informed consent form. 

Pulse waveform denoising and normalisation 

In this study, we collected the pulse signals from the wrist of the subjects. The denoising and normalization of 

pulse signals were processed with the same method as the previous studies31. Firstly, the noise was removed 

with wavelet transform decomposition method32. Then, in order to prevent the distortion of pulse signals, 

according to Nyquist theorem and actual sampling frequency8,19, the sampling points of single cycle of pulse 

wave were set at 200. Because the focus of this study was the change of pulse wave model, the amplitude of 

pulse wave was normalized to 0-200 in each cycle. 

Data sets 

Previous studies classified pulses into patterns based on the TCPD theory7,8,9,10,33. However, as mentioned 

previously, under this classification criterion, one pulse pattern may correspond to a variety of disease 

categories. Thus, in this study, based on subjects’ clinical data, we directly selected five diseases as new 

classification criteria: hypertension, atherosclerosis, hyperlipidaemia, type 2 diabetes and hypertension 

complicated by atherosclerosis (HCA). Type 2 diabetes, as one of the common complications of CVD34, and 

HCA were used to study the effects of CVD complications on pulse waves. To ensure the typical 

characteristics of each pulse pattern, the pulse signals from subjects who only suffered from one of the five 

diseases and healthy subjects (a total of six types) were used as new pulse patterns to build data set 1, as 

shown in Figure 6. 



 

Figure 6. The process of screening the subjects in data set 1.a,b,c,d Screening criteria: The number of subjects 

for a selected disease should be more than 20. The disease or complications must be of the five types selected 

in this study. There is no serious abnormality in pulse waves caused by noise or incorrect data collection, 

among others. We show all cases and numbers of excluded subjects in c: type 2 diabetes complicated by 

hypertension (n = 4), type 2 diabetes complicated by atherosclerosis (n = 3), type 2 diabetes complicated by 

heart failure (n = 5) and diabetic foot disease (n = 8). Based on the screening criteria, we excluded these cases. 

 

We simultaneously selected four physiological parameters closely related to the selected diseases as 

classification criteria: blood pressure, which can be used as an indicator for assessing hypertension35; 

cardio-ankle vascular index (CAVI), which is one of the indicators for assessing atherosclerosis36; and 

brachial ankle pulse-wave velocity (baPWV), which can be used as an indicator for evaluating cardiovascular 

function in type 2 diabetics37; For patients with hyperlipidaemia, an increase of blood lipids often occurs 

simultaneously with increased blood viscosity38. Based on the subjects in data set 2 and the medical reference 

range, we determined the range of each physiological parameter. The pulse waves of subjects in whom only 

one of the four parameters was beyond the range were selected. The pulse waves of subjects whose four 

parameters were all within the range were also selected as a healthy control group. Then the five types of 

pulse pattern were used to build data set 2, as shown in Figure 7. 



 

Figure 7. The screening process of the subjects in data set 2.a,b,c,d Screening criteria: The number of subjects 

for selected parameters should be more than 20. Subjects’ other parameters, such as stroke output and cardiac 

output, must be within the normal range of medical reference. There is no serious abnormality in pulse-wave 

caused by noise or incorrect data collection, among others. For a,b,c,d, most of the excluded subjects had three 

or even four parameter values outside of the range. To ensure that the characteristics of each pulse pattern 

were typical, we excluded these subjects. 

 

For the processing of pulse image, this study used the same method as previous studies31. We extracted the 

pulse cycles from the selected subjects. To avoid data duplication affecting the accuracy of CNN prediction, 

all pulse waves in the two data sets were taken from different cycles. The total cycles of each pulse pattern 

were 210, which were divided into training set and test set, as shown in Table 5. As mentioned above, the 

number of sampling points in a single cycle of normalized pulse wave was 200, and the amplitude was 0-200. 

Therefore, the pulse wave signals were processed as input PNG pulse images with a size of 200 x 200 pixels. 

 

 

 

 

 

 

 

 

 



Table 5. The details of PWPC data sets.  

 Pulse 

categories 

Total pulse 

number 

Training  

number 

Test 

number 

Type of disease or physiological parameters 

(range) 

Data 

set 1 

H1 210 140 70 Healthy control group in data set 1 

Hn 210 140 70 Only hypertension 

At 210 140 70 Only atherosclerosis 

Ha 210 140 70 Only hyperlipidaemia 

Td 210 140 70 Only type 2 diabetes 

HCA 210 140 70 Hypertension complicated by 

atherosclerosis 

Data 

set 2 

H2 210 140 70 Healthy control group in data set 2 

BP 210 140 70 Only high blood pressure (>90/140 mmHg) 

CAVI 210 140 70 Only CAVI (>9.0) 

baPWV 210 140 70 Only baPWV (>1400 cm/s) 

BV 210 140 70 Only blood viscosity (>5.0) 

 

 

The proposed CNN 

In this study, an optimised CNN model (10-layer) was proposed based on DCNN19 and LeNet-520, which had 

been applied for PWPC, as shown in Figure 8. Compared with the previous networks, we added dropout39 

between the third max pooling layer and the fully connected layer. When CVDs were used as classification 

criteria, each pulse pattern changed from local waveform difference under previous criteria to overall pulse 

waveform difference. This led to too many characteristic parameters of pulse wave extracted by CNN, which 

further led to over-fitting in the training process. Pre-experimental results showed that dropout layer could 

help reduce test errors and avoid over-fitting phenomenon in the training process (see Supplementary Fig. S1 

online). In addition, the final Softmax activation produced a distribution over the output probability classes for 

each pulse pattern of two data sets. Besides the layers mentioned above, the CNN also included three 

convolution layers, three max pooling layers and two fully connected layers. The number of convolution 

layers was determined by the number of pulse wave characteristic. The insufficient layers led to the 

inadequate feature extraction ability of CNN, while the excessive layers increased the time cost and 

calculation cost. In this study, we determined the number of layers by pre-experimental results. The 

convolutional layers were used to extract complex parameters of the input feature maps by convolution with 

kernels. The max pooling layers achieved the down-sampling of the input signals by choosing the maximum 

value of the area as the value of the pooled area. The max pooling layers could retain the main features of the 

input signals while reducing the parameters and computation, which helped to avoid the occurrence of 

over-fitting and improve the generalization ability of the CNN model40. The final two fully connected layers 



combined all of the upper feature maps into a one-dimensional array, which was used to classify the output. In 

this study, we used the Adam optimiser, which is straightforward to implement, with high calculation 

efficiency and low memory requirements41. In accordance with previous studies and a preliminary experiment, 

the parameters of the Adam optimiser were as follows: learning rate = 0.001, ϵ = 0.001, ρ1 = 0.9, ρ2 = 0.999 

and δ = 1E−8. During the optimisation process, we saved the best model configuration as evaluated on the test 

set. The CNN was trained by neural_network_console (Sony Company) on an Intel(R) HD Graphics 630 with 

batch size 64 for 100 epochs. 

 

Figure 8. An illustration of the CNN architecture. The size settings of convolution kernels and feature maps 

are shown in the figure. 

Evaluation 

The proposed CNN was evaluated with the average of the operating parameters calculated over time. The 

overall accuracy, precision, recall and F-measure were determined to assess the classification performance of 

the network, as presented in the results section. To further evaluate the classification performance of each 

pulse pattern, we also present the evaluation parameters of each pattern and the confusion matrices for the two 

test sets. The evaluation parameters were calculated using the true positive (TP), true negative (TN), false 

positive (FP) and false negative (FN). 

In order to further evaluate the PWPC capability of the CNN model proposed in this study, we selected three 

different neural networks (LetNet20, AlexNet14, VGG-Net15). Data set 1 and data set 2 were used as inputs of 

these three networks respectively. The PWPC results were compared with the CNN model proposed in this 

study.  
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Research on Arterial Stiffness Status in Type 2 Diabetic Patients Based on Pulse 

Waveform Characteristics 

Gaoyang Li1, Xiaorui Song2, Aike Qiao3,  Makoto Ohta4,5 * 

 

Abstract: For patients with type 2 diabetes, the evaluation of pulse waveform characteristics is helpful to 

understand changes in arterial stiffness. However, there is a lack of comprehensive analysis of pulse 

waveform parameters. Here, we aimed to investigate the changes in pulse waveform characteristics in patients 

with type 2 diabetes due to increased arterial stiffness. 

In this study, 25 patients with type 2 diabetes and 50 healthy subjects were selected based on their clinical 

history. Age, height, weight, blood pressure, and pulse pressure were collected as the subjects' basic 

characteristics. The brachial-ankle pulse wave velocity (baPWV) was collected as an index of arterial stiffness. 

Parameters of time [the pulse wave period (T), the relative positions of peak point (T1) and notch point (T2), 

and pulse wave time difference between upper and lower limbs (T3)] and area [the total waveform area (A), 

and the areas of the waveform before (A1) and after (A2) the notch point] were extracted from the pulse wave 

signals as pulse waveform characteristics. An independent sample t-test was performed to determine whether 

there were significant differences between groups. Pearson’s correlation analysis was performed to determine 

the correlations between pulse waveform parameters and baPWV.   

There were significant differences in T3, A, A1, and A2 between the groups (P < 0.05). For patients with type 2 

diabetes, there were statistically significant correlations between baPWV and T3, A, A1, and A2 (P < 0.05). 

This study quantitatively assessed changes in arterial pulse waveform parameters in patients with type 2 

diabetes. It was demonstrated that pulse waveform characteristics (T3, A, A1, and A2) could be used as indices 

of arterial stiffness in patients with type 2 diabetes. 

Keywords: type 2 diabetes, pulse waveform, arterial stiffness 

1. Introduction 

Vascular endothelial dysfunction in patients with type 2 diabetes can affect the physiological structure of large 

and medium-sized arteries and microvascular structures, which can result in decreased vascular elasticity and 

abnormal structures of organs or tissues and may even lead to arteriosclerosis. A key aspect for type 2 diabetes 

treatment is early detection and application of suitable remedial measures to prevent the process of 
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arteriosclerosis [Rydén, Standl, Bartnik et al. (2007)]. Therefore, the early detection of arterial stiffness is of 

great significance in clinical patients with type 2 diabetes. 

Previous studies have shown that pulse wave velocity (PWV) can reflect arterial stiffness and can be used as a 

parameter for the early detection of arteriosclerosis in type 2 diabetes [Woolam, Schnur, Vallbona et al. 

(1962)]. The brachial-ankle PWV (baPWV), which is used as a risk indicator for diabetic complications is 

directly related to the incidence of type 2 diabetes [Aso, Miyata, Kubo et al. (2003)]. A high baPWV value 

can serve as an independent predictor of diabetic mortality and cardiovascular morbidity [Maeda, Inoguchi, 

Etoh et al. (2014)]. For patients with type 2 diabetes, parameters such as the Cardio-ankle vascular index 

(CAVI) calculated by PWV can also be used as indices of arteriosclerosis [Ibata, Sasaki, Kakimoto et al. 

(2008); Shirai, Hiruta, Song et al. (2011)]. However, owing to technical limitations, errors in PWV 

measurement inevitably arise [Hughes, Dixon and Mcveigh (2004)], and in most studies, only the pulse wave 

velocity was selected as the research object, ignoring the pulse waveform. 

Noninvasive technology for detecting hemodynamics, represented by pulse wave detection and analysis, has 

been widely used as an important method of noninvasive detection of cardiovascular function because of its 

convenient and rapid measurement with high reliability [Allen (2007)]. Pulse waveform characteristics such as 

shape, amplitude, and period are closely related to the functional status of blood vessels. Pulse waves 

propagate in the arterial vessels and are constantly reflected at the downstream branches of all levels, thus, the 

pulse waves are not only affected by the heart but also by all levels of arteries and branches via a variety of 

physiological and pathological factors such as vascular resistance and arterial stiffness [Weber, Wassertheurer, 

Rammer et al. (2012); Hasegawa, Sato, Numano et al. (2011); Westerhof, Guelen, Stok et al. (2011); Foo, Lim 

and Wilson (2009); Chowienczyk, Kelly, Maccallum et al. (1999)]. Therefore, different physiological and 

pathological changes produce different waveform characteristics. However, for patients with type 2 diabetes, 

there is no research on the correlation between pulse waveform and arterial stiffness. Therefore, a 

comprehensive investigation into their pulse waveform characteristics is necessary. In this study, the pulse 

waveform data of patients with type 2 diabetes and healthy subjects were collected and characteristic 

parameters were extracted for statistical analysis. The correlation between baPWV used as the arterial 

stiffness index and pulse waveform parameters was analyzed to obtain the correlation between waveform 

parameters and arterial stiffness. The purpose of this study was to demonstrate that pulse waveform 

characteristics can be used as indices of arterial stiffness in patients with type 2 diabetes. 

2. Method  

2.1. Subjects 

This study was based on the “Study on Evaluation Method of Cardiovascular System Based on Noninvasive 

Detection of Blood Pressure and Pulse Wave of Limbs” [Song, Li, Qiao et al. (2016)], which recruited over 

400 subjects and determined their pulse wave and cardiovascular parameters. A total of 25 patients with type 2 

diabetes and 50 healthy subjects registered at Beijing University of Technology Hospital in 2015 were 

included in this study. The measurements of baPWV and pulse waveform, and recording of basic information 

such as gender, height, and weight were also performed at the time. A total of 75 subjects fulfilled the 



following criteria: exclusion of a diagnosis of limb disability, hypertension, arteriosclerosis, congenital heart 

disease, heart failure, and a history of artery intervention based on medical interviews, physical examinations, 

and screening examinations. Additionally, previous studies revealed a correlation between the arterial stiffness 

and the subjects' basic characteristics such as age and BMI [Mitchell, Parise, Benjamin et al. (2004)]. To avoid 

an influence of these factors on the results, there was no significant difference between the healthy subjects 

and the diabetics in this study in terms of age, height, weight, and other basic characteristics, which ensured 

that the change of pulse waveform was mainly caused by type 2 diabetes. The study protocol was approved by 

the Committee on the Ethics of Human Research of Beijing University of Technology. All participants 

provided written informed consents on the basis of a detailed understanding of the content of this study. 

2.2. Pulse wave and baPWV measurement 

Four limb pulse waves and blood pressure were measured using a Fukuda VS-1500A blood pressure and pulse 

measuring device (Fukuda Company, China) with the assistance of experienced doctors. All subjects were told 

the detection time several days in advance, and they were told not to eat stimulant food or drinks before the 

collection was completed. After resting for 15–20 min, each subject placed their hands on both sides of their 

body in a supine position. A phonocardiogram sensor was fixed in the second intercostal space on the sternum. 

Cuffs were fixed on the upper arms and ankles and electrodes were fixed at the left and right wrists. The 

device automatically obtained blood pressure and pulse waveform data of four limbs and automatically 

calculated the baPWV using the height of the subjects. The obtained data was stored in a database. 

2.3. Pulse characteristics determination 

2.3.1. Pulse waveforms denoising and normalization 

First, the off-line signal processing was used on the pulse waves to remove the various noise signals 

introduced in the signal acquisition process [Chowienczyk, Kelly, Maccallum et al. (1999)]. Next, all the 

pulses of four limbs were averaged to obtain a single reference pulse (the averaged raw pulse) of every limb, 

as shown in Fig. 1a. According to the Nyquist theorem and the sampling frequency of the device, the averaged 

raw pulse was processed with a calibration for each period of 100 sampling points. This study focused on the 

pulse shape change. Thus, the pulse amplitude was calibrated to 0–100. An example of the processing result of 

one limb is shown in Fig. 1b. Following this, the pulse waveform characteristics were extracted. 

 



 

(a) 

 

(b) 

Figure 1: The pulse waveform characteristic extraction from the averaged raw pulse waveform (a) and 

normalized pulse waveform (b) 

2.3.2. Pulse waveforms characteristics 

The pulse wave period (T), which was determined by the number of sampling points contained in the original 

waveform, was extracted from the averaged raw pulse as shown in Fig. 1a. The relative positions of the peak 

point (T1) and notch point (T2), total waveform area (A), and the areas of the waveform before (A1) and after 

(A2) the notch point were extracted from the calibrated pulse waveform as shown in Fig. 1b. These parameters 

can be used to characterize the arterial compliance of the subject as well as the artificial stiffness [Weber, 

Wassertheurer, Rammer et al. (2012); Li, Yang, Zhang et al.  (2007); Zhang, Wang, Zhang et al.  (2005); 

O'Rourke and MichaeIF (1982)]. 

During one cardiac cycle, the blood flow to the lower-extremity arteries takes longer than that in the upper 

limbs. Consequently, when using the starting point of the pulse wave period of the upper limb as a baseline, 

the pulse waveform of the lower-extremity arteries will be delayed. As shown in Fig. 2, the delay time 



depends on the PWV in the lower-extremity arteries, which is directly influenced by the lower-extremity 

artery stiffness. Lower-extremity amputation and diabetic foot disease, which also have a direct relationship 

with the change of lower-extremity artery stiffness, are common complications of diabetes mellitus 

[Rith-Najarian and Reiber (2000)]. Therefore, the delay time (T3), which is based on the number of original 

waveform acquisition points, was extracted as one of the characteristic parameters. The T3 value can directly 

affect the calculated baPWV value. Compared with baPWV, measurement of T3 is simpler and more accurate. 

This study analyzed the correlation between the T3 parameters and the corresponding baPWV values to 

determine the typicality of the selected samples. 

 

Figure 2: The determination of waveform characteristics T3 

2.4. Statistical analyses 

The parameters were analyzed using the SPSS15.0 statistical software. The mean ± SD of the parameters 

(baPWV, blood pressure, and pulse pressure; and T, T1, T2, T3, A, A1, and A2) was calculated for the healthy 

and diabetic subjects. An independent sample t-test was performed to determine whether there were 

significant differences in the parameters that we chose between healthy and diabetic subjects. Pearson’s 

correlation analysis was used to determine the degree of correlation between pulse waveform parameters and 

baPWV, which was used as an index of arterial stiffness. A P value less than 0.05 was considered statistically 

significant. 

3. Results 

3.1. Result of independent samples T-test 

Table 1 shows the basic characteristics of healthy and diabetic subjects. Compared with the healthy subjects 

group, the diabetic group differed significantly in terms of variables including the pulse pressure and systolic 

pressure (except at the left arm). 

An independent sample t-test was also conducted on the two groups to determine the pulse waveform 

parameters that differed significantly between them. The results are presented in Table 2. 

On comparing the pulse waveform parameters between these two groups, significant differences between 



these parameters were observed, including in A, A1, and A2, which were separated by the dicrotic notch point, 

T3 (P < 0.05). For the diabetic group, the values of A, A1, and A2 were higher than those of the healthy group, 

while the value of T3 was lower than that of the healthy group. The remaining waveform parameters (pulse 

wave cycle T, the pulse peak position T1, dicrotic notch position T2) did not significantly differ between the 

two groups. 

 

Table 1: Basic characteristics of the subjects with or without diabetes 

Characteristics Healthy Diabetes P 

Number(male/female)  27/23 15/10 —— 

Age, (years)  63.3±3.4 65.9±4.1 0.2 

Height, (cm)  160.0±8.0 164.5±5.5 0.53 

Weight, (kg)  65.9±9.0 68.4±8.8 0.43 

Systolic Pressure, 

(mmHg) 

Left Arm 130.6±11.8 140.5±17.3 0.056 

Right Arm 129.3±9.5 139.0±16.0 <0.05 

Left Ankle 144.1±19.2 161.8±18.6 <0.05 

Right Ankle 145.0±18.8 162.1±19.1 <0.05 

Diastolic Pressure, 

(mmHg) 

Left Arm 80.0±10.0 81.6±10.2 0.58 

Right Arm 80.1±7.6 80.0±10.3 0.92 

Left Ankle 74.9±7.4 76.0±8.2 0.68 

Right Ankle 77.3±7.4 79.8±10.4 0.41 

Pulse Pressure, 

(mmHg) 

Left Arm 50.9±8.6 58.9±10.8 <0.05 

Right Arm 49.2±8.4 59.8±14.3 <0.05 

Left Ankle 69.2±17.1 85.8±14.9 <0.05 

Right Ankle 57.7±15.5 82.2±13.3 <0.05 

Data are presented as mean ± SD. P values were calculated using the independent samples T-test. 

 

 

 

 

 

 

 

 



Table 2: The comparison of pulse waveform parameters between healthy and diabetes 

Characteristics Healthy Diabetes P 

T  914.1±118.0 915.5±199.1 0.98 

T1 

Left Arm 22.8±4.1 23.4±4.0 0.67 

Right Arm 24.0±3.7 24.4±3.7 0.75 

Left Ankle 26.5±3.2 26.2±3.8 0.79 

Right Ankle 26.6±3.2 26.2±3.8 0.75 

T2 

Left Arm 38.6±3.3 38.8±5.5 0.92 

Right Arm 38.7±3.3 39.4±5.3 1262 

Left Ankle 52.7±5.0 52.9±7.5 0.92 

Right Ankle 52.8±5.1 53.2±7.6 0.83 

T3  83.2±14.2 72.4±10.4 <0.05 

A 

Left Arm 6210.2±900.9 7506.2±858.5 <0.05 

Right Arm 6098.8±1217 7453.1±1931.6 <0.05 

Left Ankle 6717.9±1596.3 8375.2±1291.1 <0.05 

Right Ankle 6566.0±1571.1 8180.5±1268.9 <0.05 

A1 

Left Arm 3631.2±774.2 4343.0±961.1 <0.05 

Right Arm 3524.0±945.1 4362.4±1395.6 <0.05 

Left Ankle 5460.7±1404.5 6370.2±1160.1 <0.05 

Right Ankle 5159.2±1298.7 6202.4±1323.7 <0.05 

A2 

Left Arm 2421.9±279.9 2933.8±605.2 <0.05 

Right Arm 2574.7±496.5 3090.8±911.7 <0.05 

Left Ankle 1257.2±333.1 2005.0±601.9 <0.05 

Right Ankle 1406.8±451.1 1978.1±562.2 <0.05 

baPWV(m/s)  14.9±1.1 16.0±1.9 <0.05 

Data are presented as mean ± SD. P values were calculated using the independent samples T-test. 

 

3.2. Pearson’s correlation test 

Previous studies demonstrated that baPWV is directly related to the incidence of type 2 diabetes, which can be 

used to assess the risk factors for diabetic complications. The baPWV can be used to characterize the arterial 

stiffness of patients with diabetes. The basic characteristics (pulse pressure and systolic pressure except for the 

left arm) and pulse waveform parameters (A, A1, A2, and T3) were selected based on the results of the 

independent sample t-test, which showed that they differed significantly between these two groups. Next, 

Pearson’s correlation test was performed between those parameters and the corresponding baPWV. The 

correlation between waveform parameters and the baPWV values was examined to investigate the correlation 

between the waveform parameters and the arterial stiffness. Pearson’s correlation test results are presented in 



Tables 3 and 4. The baseline characteristics of pulse pressure were significantly positively correlated with 

baPWV (P < 0.05). The systolic pressure except the left arm were significantly positively correlated with 

baPWV (P < 0.05). 

Table3: Correlation between baseline characteristics and baPWV 

Characteristics R P 

Systolic Pressure, 

(mmHg) 

Right Arm 0.662** <0.05 

Left Ankle 0.663** <0.05 

Right Ankle 0.677** <0.05 

Pulse Pressure, 

(mmHg) 

Left Arm 0.512** <0.05 

Right Arm 0.474** <0.05 

Left Ankle 0.556** <0.05 

Right Ankle 0.549** <0.05 

                  P values were calculated using Pearson’s correlation test. 

                 *. Correlation is significant at the 0.05 level. 

                 **. Correlation is significant at the 0.01 level. 

Table4: Correlation between pulse waveform parameters and baPWV 

Characteristics R P 

A Left Arm 0.381* <0.05 

 
Right Arm 0.369* <0.05 

 
Left Ankle 0.458** <0.05 

 
Right Ankle 0.434** <0.05 

A1 Left Arm 0.373* <0.05 

 
Right Arm 0.342* <0.05 

 
Left Ankle 0.410* <0.05 

 
Right Ankle 0.396* <0.05 

A2 Left Arm 0.432** <0.05 

 
Right Arm 0.275 0.110 

 
Left Ankle 0.340* <0.05 

 
Right Ankle 0.269 0.118 

T3 
 

−0.458** <0.05 

                  P values were calculated using Pearson’s correlation test. 

                 *. Correlation is significant at the 0.05 level. 

                 **. Correlation is significant at the 0.01 level. 



The results showed that A and A1 were significantly positively correlated with baPWV (P < 0.05). However, 

only A2 of the left arm and left ankle was significantly positively correlated with baPWV (P < 0.05). The delay 

time T3 was significantly negatively correlated with baPWV (P < 0.05).  

4. Discussion and Conclusion 

Pulse waveform analysis is an effective method to monitor and evaluate arterial vascular functions. Herein, 

the pulse waveform data from patients with type 2 diabetes and from healthy subjects were collected and 

characteristic parameters were extracted for statistical analysis. Next, the correlations between baPWV used as 

an index of arterial stiffness and pulse waveform parameters were analyzed to obtain the correlation between 

waveform parameters and arterial stiffness. Pulse area parameters (A, A1, and A2) showed significant 

differences (P < 0.05) between groups and had significant correlations (P < 0.05) with arterial stiffness. T3 as a 

time parameter also provided the same statistical results. Thus, the pulse waveform parameters (T3, A, A1, and 

A2) can be used as an index of arterial stiffness for patients with type 2 diabetes. This was the first study to 

comprehensively investigate the pulse wave shape and its characteristic differences between patients with type 

2 diabetes and healthy subjects. 

The waveform parameters selected in this study could have definitive physiological significance. The 

differences in pulse area parameters (A, A1, and A2) between patients with type 2 diabetes and healthy 

subjects was mainly determined by the difference in wave reflection timing. Previous studies reported that the 

wave reflection timing was primarily determined by arterial stiffness [Hirata, Kawakami and O'Rourke (2006); 

Mitchell, Parise, Benjamin et al. (2004)]. Therefore, it could be asserted that the differences in pulse area 

parameters between patients with type 2 diabetes and healthy subjects were caused by the changes in arterial 

stiffness. Pulse waves are the superposition of the pressure wave generated by the heart and the pressure wave 

reflected from the body in a cardiac cycle (Fig. 3). The reflected pressure wave can be divided into two types. 

Wave 1 was mainly reflected from the arterial branch during late systole or early diastole, whereas wave 2 

was mainly caused by the collision between the blood and the closed aortic valve during diastole [Huang, 

Chang, Kao et al. (2010); Hirata, Kawakami and O'Rourke (2006); Mitchell, Parise, Benjamin et al. (2004)]. 

A1 from the beginning to the notch point indicated the physiological characteristics of the cardiovascular 

system during systole. A1 primarily depended on the pressure wave generated by the heart and the timing of 

wave 1. A2 after the notch point depended on the timing of wave 1 and wave 2. In this study, increased pulse 

area parameters were observed for type 2 diabetic patients. The increase of A can be explained by the increase 

of A1 and A2, whereas the increase of A1 and A2 could be explained by the difference of wave reflection 

timing caused by a change in arterial stiffness. In healthy subjects, because of the low arterial stiffness 

resulting in a small baPWV value, wave 1 usually occurred near the notch point [Mitchell, Parise, Benjamin et 

al. (2004)]. Wave 1 had little influence on the amplitude and width of the main pulse wave, but influenced the 

dicrotic wave. In contrast, for patients with type 2 diabetes, the baPWV value was higher because of increased 

arterial stiffness. Wave 1 appeared early, and its relative position was close to the pressure wave generated by 

the heart, even with the superposition, which made A1 higher due to the amplitude and width of the main pulse 

wave being increased. For patients with diabetes, although the high amplitude of wave 2 lead to high A2, wave 

1 made no contribution to the increase of A2. Furthermore, previous studies reported that the changes in 



peripheral resistance and blood viscosity also had a great influence on A2 [Huang, Chang, Kao et al. (2010)]. 

This could be the reason for no significant correlation between baPWV and A2 of the right arm and ankle. In 

this study, although A2 could reflect the physiological characteristics during diastole, it had limitations as an 

index for characterizing the arterial stiffness. 

 

(a) 

 

(b) 

Figure 3: Determination of the pressure wave generated by the heart, reflection wave1 and reflection wave2. 

The arrow indicates the timing of the three waves. Compared with healthy people (a), the pulse area 

parameters of patients with type 2 diabetes patients (b) increased significantly. 

 

We observed that pulse time parameters (T, T1, and T2) had no significant correlation (P >> 0.05) with 

baPWV. This result was in agreement with those reported by previous studies describing that those time 

parameters were mainly determined by the condition of the heart function within one cardiac cycle, not the 

arterial stiffness change [Lacey and Lacey (1978)]. As for T3, it was the time difference between the pulse 

wave of upper and lower limbs. T3 showed statistically significant differences between groups and had a 

strong correlation with arterial stiffness. Previous studies reported that type 2 diabetic patients had a higher 

risk of peripheral arterial disease [Carmona, Hoffmeyer, Herrmann et al.  (2005); Rith-Najarian and Reiber 

(2000)], which meant a significant increase in arterial stiffness of the lower limbs. This led to an increase in 

baPWV and reduction in T3. Therefore, T3 could reflect the change in arterial stiffness of the lower extremities 

in patients with type 2 diabetes. Combined with clinical data of lower-extremity vascular complications in 

type 2 diabetic patients, such as diabetic foot disease, a comprehensive analysis of T3 and the development of 



lower-extremity vascular complications should be carried out. 

This study had several limitations, namely, the relatively limited number of patients with type 2 diabetes and 

the incomplete information on complications. A comprehensive comparison using additional clinical data on 

type 2 diabetes is warranted. The selected subjects have limitations in the basic physiological characteristics 

such as age, height and weight. The selected population cannot reflect the situation of patients with type 2 

diabetes mellitus in all age groups and various somatotype. In this study, the statistical analysis results of 

blood pressure, pulse pressure, and baPWV from 75 subjects were consistent with those in previous studies. 

The results indicated that although the number of patients was not large, the participants’ characteristics could 

represent the typical characteristics of the arterial vascular system in patients with type 2 diabetes. Expectedly, 

the pulse pressure and blood pressure of the diabetic group were higher than those of the healthy subjects. 

Elevated blood pressure and pulse pressure are more common in people with type 2 diabetes than in the 

general population [Schram, Kostense, Van Dijk et al. (2002); Adler, Stratton, Neil et al. (2000)]. The 

statistical analysis results of pulse pressure and blood pressure revealed that pulse pressure and systolic blood 

pressure could be used to determine the physiological status of arteries including arterial stiffness in patients 

with type 2 diabetes, while diastolic blood pressure had some limitations in this regard, which is in agreement 

with a previous study [Cockcroft, Wilkinson, Evans et al. (2005)]. The high baPWV value of patients with 

type 2 diabetes showed increased arterial stiffness compared with that in healthy subjects [Woolam, Schnur, 

Vallbona et al. (1962)], which is in line with the characteristics of arterial physiological and pathological 

changes in diabetic patients and was the theoretical basis of this study. 

In conclusion, this study quantitatively demonstrated a significant change in the pulse waveform 

characteristics of patients with type 2 diabetes and analyzed the correlation between waveform parameters and 

arterial stiffness. This study showed that pulse waveform characteristics (T3, A, A1, and A2) could be used as 

indices of arterial stiffness in patients with type 2 diabetes. 
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