

| 講義内容                   |
|------------------------|
| 1. はじめに                |
| 2. 計測融合シミュレーションの理論的枠組み |
| 2.1 シミュレーションによる実現象の再現  |
| 2.2 順問題と逆問題            |
| 2.3 計測融合シミュレーションの定式化   |
| 3. 計測融合シミュレーションによる血流解析 |
| 3.1 はじめに               |
| 3.2 超音波計測融合シミュレーション    |
| 3.3 おわりに               |
| 4. まとめ                 |
|                        |
|                        |
|                        |

















誤差ダイナミックス  
簡単のため線形系で考える。状態変数 x自身を出力と考える。  
実システム: 
$$\frac{dx_r}{dt} = Ax_r + Bu_r$$
  
シミュレーション:  $\frac{dx}{dt} = Ax + Bu$   
誤差ダイナミクス:  $\frac{d}{dt}(x-x_r) = A(x-x_r) + B(u-u_r)$   
解は  $x-x_r = e^{At}(x-x_r)_{t=0} + \int_0^t e^{A(t-\tau)}B(u-u_r)d\tau$   
システム行列Aに不安定な固有値があると、初期条件およ  
び入力の誤差は指数関数的に増加する





誤差ダイナミックス  
実システム: 
$$\frac{dx_r}{dt} = Ax_r + Bu_r$$
  $y = Cx$ ,  
 $y_r = Cx_r$   
 $y_r = Cx_r$   
 $y_r = Cx_r$   
  
誤差ダイナミクス:  $\frac{dx}{dt} = Ax + Bu - K(y - y_r)$   
誤差ダイナミクス:  $\frac{d}{dt}(x - x_r) = A(x - x_r) + B(u - u_r) - K(Cx - Cx_r)$   
 $\frac{d}{dt}(x - x_r) = (A - KC)(x - x_r) + B(u - u_r)$   
解は  $x - x_r = e^{(A - KC)t}(x - x_r)_{t=0} + \int_0^t e^{(A - KC)(t - \tau)}B(u - u_r)d\tau$   
フィードバックゲイン行列Kを適当に選んで、(A - KC)の固有値の実  
部を全て負に設定できれば、任意の初期条件から誤差はOIに収束  
する。























| 流れ場の基礎式(2)                                                                                                     |                                                                  |                 |
|----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|-----------------|
| 初期条件(V:領域)<br>$u(0,x) = u_0(x)$<br>境界条件( $\partial V = \partial V_1 + \partial V_2$ :境界                        | $x \in V$                                                        | (1.4)           |
| $u(t,x) = u_B(t,x)$                                                                                            | $x\in \partial V_1$                                              | (1.5.1)         |
| $p(t,x) = p_B(t,x)$                                                                                            | $x\in \partial V_2$                                              | (1.5.2)         |
| (1.5.1)式は(1.1)式を用いて圧力の                                                                                         | のノイマン条件に変                                                        | 換される。           |
| $\nabla p\big _{\partial V_1} = \left\{-\frac{\partial u}{\partial t} - \left(u_0 \cdot \nabla\right)\right\}$ | $\left. \right) u + v\Delta u + f \bigg\} \bigg _{\partial V_1}$ | (1.5.3)         |
| 上記の初期条件および境界条件<br>照のこと。                                                                                        | の取扱いについては                                                        | 、Appendix(A.1)参 |
|                                                                                                                |                                                                  |                 |

| 2 字理在                                                                                                  |                                              |         |
|--------------------------------------------------------------------------------------------------------|----------------------------------------------|---------|
| 2. 天況家<br>実現象の基礎式として、式(1.1)~                                                                           | (1.5)を再記する。                                  |         |
| $\partial u$ ( $\nabla$ ) $\nabla$                                                                     | 7                                            | (2.1)   |
| $\frac{\partial u}{\partial t} = -(u \cdot v)u + v\Delta u - v$                                        | p + j                                        | (2.2)   |
| $\nabla \cdot u = 0$                                                                                   |                                              | (2.3)   |
| $\Delta p = -\nabla \cdot \left\{ \left( u \cdot \nabla \right) u \right\} + \nabla$                   | $ abla \cdot f$                              |         |
| 初期条件(V:領域)                                                                                             |                                              |         |
| $u(0,x) = u_0(x)$                                                                                      | $x \in V$                                    | (2.4)   |
| 境界条件 $(\partial V = \partial V_1 + \partial V_2$ : 境界                                                  | L)                                           |         |
| $u(t,x) = u_B(t,x)$                                                                                    | $x \in \partial V_1$                         | (2.5.1) |
| $p(t,x) = p_B(t,x)$                                                                                    | $x\in \partial V_2$                          | (2.5.2) |
| $\nabla p\Big _{\partial V_1} = \left\{-\frac{\partial u}{\partial t} - (u \cdot \nabla)u + v\right\}$ | $\Delta u + f \bigg\} \bigg _{\partial V_1}$ | (2.5.3) |
|                                                                                                        |                                              |         |
|                                                                                                        |                                              |         |

| 2. 実現象(2)                                                        |         |
|------------------------------------------------------------------|---------|
| 式(2.1)~(2.3)を以下のように簡略化する。                                        |         |
| $\frac{\partial u}{\partial t} = g\left(u\right) - \nabla p + f$ | (2.6)   |
| $ abla \cdot u = 0$                                              | (2.7)   |
| $\Delta p = q(u) + \nabla \cdot f$                               | (2.8)   |
| ここで、                                                             |         |
| $g(u) = -(u \cdot \nabla)u + v\Delta u$                          | (2.9.1) |
| $q(u) = -\nabla \cdot \{(u \cdot \nabla)u\}$                     | (2.9.2) |
|                                                                  |         |
|                                                                  |         |
|                                                                  |         |



3. 数値シミュレーション(2)  
式(2.6)~(2.9)に対応するモデルを次式(3.1)~(3.4)で表す。  

$$\frac{du_N}{dt} = g_N(u_N) - \nabla_N p_N + f_N$$
 (3.2)  
 $\nabla_N^T u_N = 0$  (3.3)  
 $\Delta_N p_N = q_N(u_N) + \nabla_N^T f_N$  (3.4)  
 $c = c$   
 $g_N(u_N) = -(u \cdot \nabla)_N u_N + v \Delta_N u_N$  (3.4.1)  
 $q_N(u_N) = -\nabla_N^T (u \cdot \nabla)_N u_N$  (3.4.2)  
 $\nabla_N$ ,  $\Delta_N$ はそれぞれ又、 $\Delta O$ 離散表現の3N×N, N×N次行列であり、離散  
化の方法(中心差分、高次風上差分、…等)により異なった形式となる。

3.数値シミュレーション(3)  
初期条件  

$$u_N(0) = u_{N0}$$
 (3.5)  
境界条件  
 $u'_{N \partial V_{1N}}(t) = u_{BN}(t)$  (3.6.1)  
 $p'_{N \partial V_{2N}}(t) = p_{BN}(t)$  (3.6.2)  
 $\nabla_{N P_N}|_{\sigma_{N-1}} = \left\{ -\frac{\partial u'_N}{\partial t} - (u \cdot \nabla)_N u_N + v \Delta_N u_N + f_N \right\}_{\sigma_{N,N}}$  (3.6.3)  
式(3.1)~(3.3)には上記の境界条件が適切に組み込まれているものとする。

4.実現象の離散化 実現象から、3. で定義されたN個の格子点上での値を抽出する写像を したいる。 理想的な計測と考えられる) た、部分集合M内の離散点の値を抽出する写像を $D_{MN}$ とする。 て(2.6)~(2.8)に $D_N$ を作用させる(外力fは0とする)  $d_{dt} D_N (\alpha) = D_N (\alpha) - D_N (\nabla P)$  (4.1)  $D_N (\nabla \alpha) = 0$  (4.2)

## 4.実現象の離散化(2)

初期条件

 $D_N\left(u\left(0,x\right)\right) = D_N\left(u_0(x)\right)$ 

境界条件

$$D'_{N\partial V_{1}}\left(u\left(t,x\right)\Big|_{\partial V_{1}}\right) = D'_{N\partial V_{1}}\left(u_{B}\left(t,x\right)\right)$$

$$(4.5.1)$$

(4.4)

$$D'_{\lambda\partial V_{i}}\left(p\left(t,x\right)\Big|_{\partial V_{i}}\right) = D'_{\lambda\partial V_{i}}\left(p_{B}\left(t,x\right)\right)$$

$$(4.5.2)$$

$$D'_{N\partial V_{1}}\left(\nabla p\big|_{\partial V_{N1}}\right) = D'_{N\partial V_{1}}\left(\left\{-\frac{\partial u}{\partial t} - \left(u \cdot \nabla\right)u + v\Delta u\right\}\right)\right)_{\partial V_{1N}}$$
(4.5.3)

 5. 理想的シミュレーション

 今後の解析の準備として、「理想的シミュレーション」を次のように定義する。

 【定義】<br/>数値シミュレーションの初期条件および境界条件が実現象の値と一致し、さらに実現象の格子点上の値がシミュレーションの解となる場合に、理想的シミュレーションと呼ぶ

 この定義より、理想的シミュレーションでは実現象の格子点の値 ( $D_N(u)$ )

 等)を数値シミュレーションのモデル、式(3.1)~(3.3)の $u_N$ の部分に代入した式が成立する。

  $\frac{d(D_N(u))}{dt} = g_N(D_N(u)) - \nabla_N(D_N(p))$ 
 $\nabla_N^T D_N(u) = 0$ 
 $\Delta_N D_N(p) = q_N(D_N(u))$  

 (5.3)

| 5.理想的シミュレーション(2)                                                                                                                                                                                                                                                                                    |         |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 式(5.1)と式(4.1)の左辺がそれぞれ等しいので                                                                                                                                                                                                                                                                          |         |
| $g_{N}(D_{N}(u)) - \nabla_{N}(D_{N}(p)) = D_{N}(g(u)) - D_{N}(\nabla p)$                                                                                                                                                                                                                            | (5.4)   |
| 初期条件                                                                                                                                                                                                                                                                                                |         |
| $u_{N}(0) = D_{N}\left(u(0,x)\right)$                                                                                                                                                                                                                                                               | (5.5.1) |
| $\mathcal{L} = D_N \left( u_0(x) \right)$                                                                                                                                                                                                                                                           | (5.5.2) |
| 境界条件                                                                                                                                                                                                                                                                                                | ~ /     |
| $u_{N\partial V_{1N}}'\left(t\right) = D_{N\partial V_{1}}\left(u\left(t,x\right)\Big _{\partial V_{1}}\right)$                                                                                                                                                                                     | (5.6.1) |
| $p_{N\partial V_{2N}}'(t) = D_{N\partial V_{2}}\left(p(t, x)\Big _{\partial V_{2}}\right)$                                                                                                                                                                                                          | (5.6.2) |
| $\nabla_{N} D_{N} \left( p \right) \Big _{\partial V_{N1}} = \left\{ -\frac{\partial D_{N\partial V_{1}} \left( u \left( t \right) \right)}{\partial t} - D_{N} \left( \left( u \cdot \nabla \right) u \right) + \nu \left( D_{N} \left( \Delta u \right) \right) \right\} \Big _{\partial V_{1N}}$ | (5.6.3) |

6. 計測融合シミュレーション 数値シミュレーションのNavier-Stokes式の離散化式にフィードバックを 加える。  $\frac{du_N}{dt} = g_N\left(u_N\right) - \nabla_N p_N - K_u\left(u_M - u_{Mm}\right)$ (6.1)ここで、右辺第3項は速度ベクトルに関する関するフィードバック  $K_u: N \times M ゲイン行列$  $u_M = C u_N$ (計算値) (6.2.1)  $u_{Mm}^{N} = CD_{N}(u) + \varepsilon_{u}$ (計測値) (6.2.2) C: M×N行列(計測可能な要素は1,その他の要素は0)  $\varepsilon_u$ :計測誤差 式(6.2)を式(6.1)に代入して,  $\frac{\partial u_{N}}{\partial t} = g_{N}\left(u_{N}\right) - \nabla_{N} p_{N} - K_{u}C\left(u_{N} - D_{N}\left(u\right)\right) + K_{u}\varepsilon_{u}$ (6.3) 6. 計測融合シミュレーションと実現象の差より誤差ダイナミックス(式 (6.3) – 式(4.1))を求める。  $\frac{d}{dt}(u_N - D_N(u)) = g_N(u_N) - D_N(g(u)) - \nabla_N p_N + D_N(\nabla p) \\ -K_u C(u_N - D_N(u)) + K_u \cdot \varepsilon_u$  $\frac{d}{dt}(u_N - D_N(u)) = g_N(u_N) - g_N(D_N(u)) + g_N(D_N(u)) - D_N(g(u)) \\ -\nabla_N p_N + \nabla_N(D_N(p)) - \nabla_N(D_N(p)) + D_N(\nabla p) \\ -K_u C(u_N - D_N(u)) + K_u \varepsilon_u$ 理想的シミュレーションでは,式(5.4)より二重下線部が0となる点に注意する。 下線部をTaylor展開し、2 次以上の高次項を無視すると、

6. 計測融合シミュレーション(3)  

$$\frac{d}{dt}(u_{N} - D_{N}(u)) = g_{N}(u_{N}) - \left\{g_{N}(u_{N}) + \frac{dg_{N}}{du_{N}}\right|_{u_{N}}(D_{N}(u) - u_{N})\right\} + g_{N}(D_{N}(u)) - D_{N}(g(u)) - \nabla_{N}p_{N} + \{\nabla_{N}p_{N} - \nabla_{N}(D_{N}(p) - p_{N})\} - \nabla_{N}(D_{N}(p)) - D_{N}(\nabla p) - K_{u}C(u_{N} - D_{N}(u)) + K_{u}\varepsilon_{u}$$

$$\frac{d}{dt}(u_{N} - D_{N}(u)) = \left\{\frac{dg_{N}}{du_{N}}\right|_{u_{N}}(u_{N} - D_{N}(u))\right\} - K_{u}C(u_{N} - D_{N}(u)) - \left\{\nabla_{N}(p_{N} - D_{N}(p))\right\} + g_{N}(D_{N}(u)) - D_{N}(g(u)) - \nabla_{N}(D_{N}(p)) + D_{N}(\nabla p) + K_{u}\varepsilon_{u}$$

6. 計測融合シミュレーション(4)  

$$\frac{d}{dt}(u_N - D_N(u)) = \left(\frac{dg_N}{du_N}\Big|_{u_N} - K_u C\right)(u_N - D_N(u))$$

$$-\nabla_N(p_N - D_N(p))$$

$$+ g_N(D_N(u)) - D_N(g(u)) - \nabla_N(D_N(p)) + D_N(\nabla p)$$

$$+ K_u \varepsilon_u$$
(6.5)

6. 計測融合シミュレーション(5)  
以下では圧力方程式(3.3)を考える。  

$$\Delta_N p_N = q_N (u_N) + \nabla_N^T f_N$$
 (6.6)  
 $\Delta_N p_N - \Delta_N D_N (p) + \Delta_N D_N (p)$  (6.7)  
 $= q_N (u_N) - \underline{q_N} (D_N (u)) + q_N (D_N (u)) + \nabla_N^T f_N$   
下線\_\_\_\_部をTaylor展開し、2 次以上の高次項を無視すると、

6. 計測融合シミュレーション(6)  

$$\Delta_{N}(p_{N}-D_{N}(p))+\Delta_{N}D_{N}(p)$$

$$=q_{N}(u_{N})-\left\{q_{N}(u_{N})+\frac{dq_{N}}{du_{N}}\Big|_{u_{N}}(D_{N}(u)-u_{N})\right\}+q_{N}(D_{N}(u))+\nabla_{N}^{T}f_{N}$$

$$\Delta_{N}(p_{N}-D_{N}(p))$$

$$=\left\{\frac{dq_{N}}{du_{N}}\Big|_{u_{N}}(u_{N}-D_{N}(u))\right\}+\underline{q_{N}(D_{N}(u))-\Delta_{N}D_{N}(p)}+\nabla_{N}^{T}f_{N}$$
(6.8)  
理想的シミュレーションでは,式(5.4)より下線\_部が0となる点に注意  
する。  
 $\Delta_{N}$ は正則なので逆行列を左から掛けると次式となる。

6. 計測融合シミュレーション(7)  

$$p_{N} - D_{N}(p) = \Delta_{N}^{-1}((dq_{N} / du_{N}|_{u_{N}})(u_{N} - D_{N}(u)) + q_{N}(D_{N}(u)) - \Delta_{N}D_{N}(p) + \nabla_{N}^{T}f_{N})$$
(6.9)  
式(6.9)を式(6.5)に代入すると、  

$$\frac{d}{dt}(u_{N} - D_{N}(u)) = \left(\frac{dg_{N}}{du_{N}}\Big|_{u_{N}} - K_{u}C\right)(u_{N} - D_{N}(u)) - \nabla_{N}\Delta_{N}^{-1}\left(\frac{dq_{N}}{du_{N}}\Big|_{u_{N}}\right)(u_{N} - D_{N}(u))$$

$$-\nabla_{N}\Delta_{N}^{-1}\left(\frac{dq_{N}}{du_{N}}\Big|_{u_{N}}\right)(u_{N} - D_{N}(u)) - \nabla_{N}\Delta_{N}^{-1}\left\{q_{N}(D_{N}(u)) - \Delta_{N}D_{N}(p) + \nabla_{N}^{T}f_{N}\right\} + g_{N}(D_{N}(u)) - D_{N}(g(u)) - \nabla_{N}(D_{N}(p)) + D_{N}(\nabla p) + K_{u}\varepsilon_{u}$$

6. 計測融合シミュレーション(8)  

$$\begin{pmatrix}
\frac{d}{dt}(u_{N} - D_{N}(u)) = \left(\frac{dg_{N}}{du_{N}}\Big|_{u_{N}} - K_{u}C - \nabla_{N}\Delta_{N}^{-1}\frac{dq_{N}}{du_{N}}\Big|_{u_{N}}\right) \times (u_{N} - D_{N}(u)) \\
- \nabla_{N}\Delta_{N}^{-1} \left\{ q_{N}(D_{N}(u)) - \Delta_{N}D_{N}(p) + \nabla_{N}^{T}f_{N} \right\} \quad (6.10) \\
+ g_{N}(D_{N}(u)) - D_{N}(g(u)) - \nabla_{N}(D_{N}(p)) + D_{N}(\nabla p) \\
+ K_{u}\varepsilon_{u}
\end{cases}$$
  
式(6.10)が、計測融合シミュレーション式(6.1),(6.7)における、速度誤差   
 $(u_{N} - D_{N}(u))$ の漸近挙動と記述する近似式である。
  
圧力誤差 $(p_{N} - D_{N}(p))$ の漸近挙動については、式(6.9)で与えられている。
  
 $p_{N} - D_{N}(p) = \Delta_{N}^{-1}((dq_{N}/du_{N}|_{u_{N}})(u_{N} - D_{N}(u)) \\
+ q_{N}(D_{N}(u)) - \Delta_{N}D_{N}(p)) + \nabla_{N}^{T}f_{N}$ 

Appendix 境界条件 (1) Navier-Stokes式 Navier-Stokes式(1.1)は、放物型であるので、初期値問題及び初期値境界値 問題について適正である。 (2) 圧力方程式 圧力方程式(1.3)は、楕円型であり、境界値問題に対して適正である。境界 条件式(1.5)の式(1.5.1)を圧力の条件に変換する。 境界条件式(1.5.1)より、 $\partial V_1$ 上の $\partial u/\partial t$ が任意の時刻で与えられるので、式 (1.1)より  $\nabla p|_{\partial V_1} = \left\{ -\frac{\partial u}{\partial t} - (u \cdot \nabla)u + v\Delta u + f \right\}|_{\partial V_1}$  (a.1.1) 上式は、圧力方程式(1.3)のノイマン条件を与える。 したがって、境界条件(a.1.1),(1.5.2)により圧力方程式は解ける。 (3) 定常Navier-Stokes式(補足) 定常Navier-Stokes式(補足)

## 3. 計測融合シミュレーションによる血流解析







|             | 長所                                                                                      | 短所                                                                   |
|-------------|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------|
| X線診断<br>装置  | <ul> <li>・空間分解能、時間分解能が最も高い(0.2<br/>mm、33 ms)</li> </ul>                                 | ・放射線被曝                                                               |
| 超音波診<br>断装置 | <ul> <li>・空間分解能(体表面)、時間分解能が高い</li> <li>・生体に悪影響を与えない</li> <li>・血管形状と血流速の測定が可能</li> </ul> | <ul> <li>・コントラストが低い</li> <li>・空気や骨の界面の後ろ</li> <li>は観察できない</li> </ul> |
| СТ          | ・3次元データが得られる<br>・コントラストがX線診断装置より高い                                                      | ・放射線被曝                                                               |
| MRI         | ・3次元データが得られる<br>・軟部組織のコントラストが高い<br>・速度分布の計測が可能(PCMRI)<br>・骨の陰影がない                       | <ul> <li>・空間分解能、時間分解</li> <li>能は比較的低い</li> <li>・高額</li> </ul>        |









































