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Abstract—Acquisition of detailed information on the velocity
and pressure fields of the blood flow is essential to achieve accu-
rate diagnosis or treatment for serious circulatory diseases such
as aortic aneurysms. A possible way to obtain such information
is integration of numerical simulation and color Doppler ultra-
sonography in the framework of a flow observer. This method-
ology, namely, Ultrasonic-Measurement-Integrated (UMI) Sim-
ulation, consists of the following processes. At each time step
of numerical simulation, the difference between the measurable
output signal and the signal indicated by numerical simulation is
evaluated. Feedback signals are generated from the difference, and
numerical simulation is updated applying the feedback signal to
compensate for the difference. This paper deals with a numerical
study on the fundamental characteristics of UMI simulation using
a simple two-dimensional model problem for the blood flow in
an aorta with an aneurysm. The effect of the number of feedback
points and the feedback formula are investigated systematically.
It is revealed that the result of UMI simulation in the feedback
domain rapidly converges to the standard solution, even with usu-
ally inevitable incorrect upstream boundary conditions. Finally, an
example of UMI simulation with feedback from real color Doppler
measurement also shows a good agreement with measurement.

Keywords—Bio-fluid mechanics, Computational fluid dynamics,
Ultrasonic measurement, Color Doppler imaging, Measurement-
integrated simulation, Aneurysm, Boundary condition, Pulsatile
flow.

INTRODUCTION

Blood flow, which plays important roles in vital susten-
tation and homeostasis, is hindered by disabilities result-
ing from circulatory diseases.22 For example, with aging,
asymptomatic aneurysms may develop due to arterioscle-
rosis, and their rupture may be fatal. It has been empirically
found that the size of aneurysms is a reliable anatomi-
cal factor predictive of rupture, and statistics have been
compiled regarding the size of ruptured and unruptured
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aneurysms.27,29 For example, Ujiie et al. suggested that the
aspect ratio of aneurysms is a useful parameter in predicting
imminent aneurysmal rupture.29 Although hemodynamic
forces such as blood pressure and wall shear stress due to
blood flow are known to be related to the development,
progress, and rupture of aneurysms,2,7,14,25 detailed mech-
anisms remain to be elucidated. Clarification of the rela-
tionship between pathology and the cause of circulatory
diseases is essential.

Among a number of existing imaging modalities, color
Doppler ultrasonography is widely used for the diagnosis of
blood vessel diseases since it noninvasively provides real-
time images of the blood flow structure and vessel config-
uration by a relatively compact system. Figure 1 shows an
example of a color Doppler image around an aneurysm of
the descending aorta. The configuration of the vessel wall
is reconstructed as a B-mode image from time delays and
magnitudes of the ultrasonic echo, which are emitted from
a probe (located at the center of the sector), and reflected by
the structures in vivo. Furthermore, the blood velocity com-
ponent in the direction of the ultrasonic beam or the Doppler
velocity is measured by the Doppler shift frequency. In or-
der to visualize the blood flow, the frequency shifts are con-
verted to colors of graduated intensity, blue for flow away
from the probe and red for flow approaching the probe, as
displayed on top of the B-mode image. Since the equipment
measures only the Doppler velocity, it is difficult to recog-
nize the exact three-dimensional blood flow field. Recently,
three-dimensional reconstruction of the blood vessel con-
figuration, velocity profile, and pressure distribution from
the ultrasonic measurement have been investigated.1,18,21,28

Capineri et al. developed a technique for dynamic displays
of vector velocity maps, in which the velocity vectors ob-
tained by Doppler measurements in two independent di-
rections are properly interpolated.1 Tortoli et al. presented
the real-time two-dimensional velocity profile of descend-
ing aortic blood flow using a set-up based on an esophageal
probe connected to a multigate Doppler-processing system,
and confirmed extremely complex flow in the proximal
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FIGURE 1. Color Doppler image around a thoracic aneurysm (Center frequency: 4.4 MHz, Pulse repetition frequency: 4 kHz).

portion of the aortic arch or in the case of aortic diseases.28

Ohtsuki et al. developed a new method for nondisturb-
ing, quantitative measurement of pressure, in which the
velocity component orthogonal to the Doppler velocity is
deduced after measurement of the velocity field by the pulse
Doppler technique, and the pressure is calculated from the
acceleration.18 However, in experimental works, there are
some limitations such as the direct effects of noise and
the Doppler transducer position on data acquisition and the
assumption of symmetrical flow in the calculation, so that
no method to obtain complete information in real time yet
exists.

As a counterpart of measurement, numerical simulation
of the blood flow has been studied extensively. Realistic
representation of blood flow can be obtained by solving
the fundamental equations of the flow with realistic ves-
sel geometries obtained by medical imaging techniques
such as magnetic resonance imaging (MRI) or computed
tomography (CT).3,4,8,12,15,16,24,26,30 Numerical simulation
dealing with flow in an aorta with an aneurysm has also
been carried out by such a combination.3,4,26 Taylor and
Yamaguchi reported the appearance and disappearance of
a primary vortex and regions of high shear stresses both at
the proximal and distal ends of the aneurysm.26 Di Martino
et al. studied the complex mechanical interaction between
blood flow and wall dynamics in a three-dimensional cus-
tom model of an abdominal aortic aneurysm and provided
a quantitative local evaluation of the stresses.3 However,
numerical simulation has an inherent problem of speci-
fication of the boundary conditions,8,12,15,16 and thus the
calculated blood flow is usually similar but not identical to
the real one. In order to minimize the effect of inaccurate
inlet velocity profile specification on local wall shear stress
computations in the vessel segment, Liu et al. extended

their model of the carotid artery in the upstream direction
with a straight tube, proposing that such extension may
be useful until more accurate, noninvasively obtained ve-
locity profile data for the inlet become available.15 In the
descending aorta, however, extension by adding the as-
cending aorta and the aortic arch does not eliminate the ef-
fect of the upstream boundary condition on reproduction of
the complicated flow structure (e.g., Kilner et al. observed
helical and retrograde secondary flow patterns in the aor-
tic arch using magnetic resonance velocity mapping).13,28

By numerical simulation with an integrated model of the
left ventricle and the aorta, Nakamura et al. revealed that
the upstream boundary condition strongly influences de-
velopment of the helical flow.16 Glor et al. performed MRI
velocity measurements and computation in the U bend,
confirming the importance of accurate inflow boundary
conditions.8 Since velocity data cannot yet be reliably mea-
sured by MRI due to artifacts such as partial volume effect,
inevitable errors are introduced to the computation of the
full three-dimensional velocity field and wall shear stress.
Therefore, development of new methodology that can ex-
actly provide detailed information on blood flow is strongly
required.

Integration of computation and measurement in the
framework of a flow observer is a possible way to solve
these problems.9,17 Hayase et al. proposed such a flow
observer as an analytic methodology for general flow
problems.9 Conceptually, a flow observer is the state ob-
server in control theory applied to flow analysis. For inves-
tigation of a real flow, a simulation model is constructed in a
computer using standard numerical analysis methodology
based on fundamental equations with appropriate bound-
ary and initial conditions. Some output signals are defined
for real flow measurement and for numerical simulation
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in order to evaluate the difference between the two results.
Numerical simulation is carried out with an additional body
force or a boundary condition as a feedback signal that is
derived from the difference between the two output signals.
If the feedback law is designed properly, the computational
result converges to the real flow. In the cited study by Hayase
et al.,9 numerical simulation of the flow observer was per-
formed for a turbulent flow through a square duct. Turbu-
lent flow structure including fluctuation was successfully
reproduced by the feedback of errors in the axial velocity
components estimated at 100 points on a cross section of
the duct to the pressure boundary condition based on the
simple proportional control law. Nisugi et al. developed a
hybrid wind tunnel based on a flow observer and investi-
gated the flow with a Karman vortex street, revealing the
substantial advantage of such methodology over ordinary
simulation, especially in its ability to reconstruct real flow
and in its computational efficiency.17 As a flow analysis
method, a flow observer generally has several advantages:
(1) simulation is performed using real flow conditions,
(2) the simulation is simultaneously validated by measure-
ment, and (3) real-time simulation can possibly be carried
out owing to a significant improvement in computational
efficiency.

In this paper, a flow observer is applied for the analysis
of blood flow by integrating numerical simulation and mea-
surement with color Doppler ultrasonography. We term this
method Ultrasonic-Measurement-Integrated (UMI) simu-
lation. In UMI simulation, feedback signals are added to
the Navier-Stokes equation and the pressure equation in
the form of a source term to compensate for the differ-
ence between the computation and the measurement. Of
course, UMI simulation is expected not only to reconstruct
the color Doppler image but also to provide the velocity
vectors and the pressure distribution in detail. This paper
concerns UMI simulation using a simple two-dimensional
model problem for blood flow in an aorta with an aneurysm.
We focus on the problem of whether the feedback loop in
UMI simulation effectively reduces the error in the flow
domain resulting from an incorrect velocity profile setting
at the upstream boundary, which usually takes place in
numerical simulations of blood flow. A numerical simula-
tion with an assumed boundary condition is first defined
as a model of real flow since existing ultrasonic mea-
surement does not provide complete information on real
blood flow and, therefore, is not suitable as a standard
to evaluate UMI simulation. UMI simulation is investi-
gated as to the convergence of its result to the standard
solution when the real velocity profile at the upstream
boundary is unknown and is incorrectly assumed. Feed-
back algorithms of UMI simulation are designed by eval-
uating the error from the standard solution. Using these
feedback algorithms, an example of UMI simulation with
the feedback using real color Doppler measurement is also
presented.

UMI SIMULATION USING SIMULATED COLOR
DOPPLER MEASUREMENT

Subject and Computational Method

This paper deals with the blood flow in the vicin-
ity of an aneurysm in the descending aorta as shown in
Fig. 1. A 62-year-old male patient with a chronic aor-
tic aneurysm in his descending aorta participated in the
study. He had no significant cardiac complications. His
cardiac output was 9.17 × 10−5 m3 s−1 (5.5 l min−1) and
his heart rate was 0.87 Hz (52 bpm) during the measure-
ment. Transesophageal echocardiography was performed
with an ultrasound device (SONOS 5500, Philips Medi-
cal Systems, Andover, MA, USA) with a transesophageal
ultrasonic transducer (T6210, Philips Medical Systems,
Andover, MA, USA). The central frequency was variable,
ranging from 4 to 7 MHz. The images were stored with a
digital video recorder (DCR-TRV30, SONY, Tokyo, Japan).
In UMI simulation, the B-mode image of the blood vessel
obtained by ultrasonic diagnostic equipment is digitized to
extract the cross-sectional surface manually, and the pixel
data is allocated to define a two-dimensional computational
domain. The shape of the blood vessel is extended in both
the upstream and downstream directions in order to perform
numerical simulation (see Fig. 2, the right side is upstream).
The x-axis is defined in the flow direction at the upstream
boundary (x = 0), and the y-axis is defined against it with
the left-handed system.

Table 1 shows parameters used in this computation. Car-
diac cycle T is calculated from the heart rate. The upstream
shape of the blood vessel is assumed to be cylindrical,
and the diameter D is calculated from the image. Since
the upstream boundary is located at some distance from
the aneurysm, we consider that the blood vessel can be
assumed to be cylindrical. Three-dimensional reconstruc-
tion from B-mode images in many directions may give
the correct shape of the cross section. We are not, how-
ever, so concerned with this since this paper deals with

FIGURE 2. Computational grid and arrangement of monitoring
points.
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TABLE 1. Computational conditions.

Heart rate 0.87 Hz (52 bpm)
Cardiac cycle T 1.15 s
Cardiac output 9.17 × 10−5 m3/s (5.5 l/min)
Entrance flow 6.42 × 10−5 m3/s (3.85 l/min)
Maximum mean velocity u ′

max 0.74 m/s
Entrance vessel diameter D 28.25 × 10−3 m
Kinematic viscosity ν 4.0 × 10−6 m2/s

fundamental two-dimensional analysis. With reference to
the blood flow measurement data, we assume that 30%
of the cardiac output flows into the branches and that the
remaining 70% (6.42 × 10−5 m3 s−1) flows into the de-
scending aorta.6 The variation of the flow rate q is modeled
as shown in Fig. 3 according to the MR measurement by
Olufsen et al.19 Blood is assumed to be Newtonian fluid
with a density ρ = 1.00 × 103 kg m−3 and a dynamic vis-
cosity µ = 4.0 × 10−3 Pa s within normal range.

As a fundamental consideration of blood flow simula-
tion integrated with ultrasonic measurement, we assume
two-dimensional flow, although intravascular blood flow in
vivo has a complex three-dimensional structure. Governing
equations for two-dimensional incompressible and viscous
fluid flow are the Navier-Stokes equation,

∂u
∂t

= −(u · grad) u + 1

Re
∇2u − grad p, (1)

and the equation of continuity,

div u = 0, (2)

where u = (u, v) is the velocity vector and p is the pressure.
All the values are nondimensionalized with the diameter of
the blood vessel D, the cross-sectional average velocity umax

at the upstream boundary for the maximum cardiac output,
and the kinematic viscosity ν of the blood. From here on,
the same symbols are used for both dimensional and nondi-
mensional values since it does not cause confusion.

FIGURE 3. Time variation of flow volume in descending aorta
and of cross-sectional average flow velocity at upstream
boundary (nondimensional).

With regard to the upstream boundary conditions for
the standard solution, we assume a Poiseuille flow with a
parabolic profile in x-directional velocity. For the condition
of UMI simulation and the ordinary simulation, in contrast,
we assume a different flow with a uniform profile in x-
directional velocity.

u(Xu, y, t) =
{

3
2 u′(t){1 − (y − Yu)2/(D/2)2} (Standard solution)

u′(t) (UMI simulation and ordinary simulation)

v(Xu, y, t) = 0 , (3)

Yu − D/2 ≤ y ≤ Yu + D/2

where Xu and Yu are the x and y coordinates of the center
of the vessel at the upstream boundary, respectively, and
u′(t) is the time-varying upstream cross-sectional average
flow velocity determined by the modeled flow rate19 as
shown in Fig. 3. As mentioned above, we define the stan-
dard numerical solution as a model of the real flow. In
order to investigate the effect of the feedback signal on
UMI simulation, its upstream boundary velocity profile is
assumed to be different from that of the standard solution.
At the downstream boundary of the computational domain,
the free-flow condition (∂/∂n = 0, n: coordinate normal to
the boundary) is applied, and the no-slip condition is applied
to the blood vessel wall.

The governing equations are discretized by means of
the finite volume method. These equations are solved with
an algorithm similar to the SIMPLER method.10,20 In the
SIMPLER method, the x-directional momentum equation
in Navier-Stokes equations is expressed as

ui =
(∑

B j u j + Si

)/
Bi + di (pi − pi−1), (4)

where
(∑

B j u j
)

means the summation of the values at four
adjacent nodes. By substituting Eq. (4) and similar equa-
tions for y-directional momentum to the integrated form of
the equation of continuity, the pressure equation is obtained.

ai pi =
∑

a j p j + spi , (5)

where
(∑

a j p j
)

represents the summation of the values
at four adjacent nodes. The concrete notations of the pa-
rameters in Eqs. (4) and (5), as well as supplementary pres-
sure correction equations and velocity correction procedure
in the SIMPLER method, are explained in a reference.20

In descretization of the convective terms in Navier-Stokes
equations, a consistently reformulated QUICK scheme11 is
applied in order to assure continuity of the flux at the inter-
face of control volumes during the iterations. The QUICK
scheme is a three-point upstream-weighted quadratic inter-
polation technique within the context of a control-volume
approach. In the discretization for the time derivative terms,
a second order implicit scheme5 is used. The system of
linear algebraic equations is solved with the pentadiago-
nal matrix solver, i.e., the MSI method,23 which is a very
efficient iterative solver of linear equations.
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In this study, we introduced three types of staggered
grid systems, in which nodes for velocity components are
shifted in half grid size from the pressure node, with differ-
ent numbers of grid points in the x and y directions: 32 × 20
with grid spacing of 2.973 × 10−3 m (Grid A), 65 × 40
with 1.487 × 10−3 m (Grid B), and 130 × 80 with 0.743 ×
10−3 m (Grid C). Among these three types of grid systems,
Grid A is too coarse to represent the shape of the blood
vessel precisely. On the other hand, Grid C is fine enough
to represent the shape, but it requires huge computational
time (about 300 h for one case) to converge to the periodic
solution. Hence, in the numerical study for the validation
of UMI simulation, we use Grid B as shown in Fig. 2,
compromising between reproducibility of the vessel shape
and computational time. The adequate residual at conver-
gence and the maximum iteration number are respectively
determined as 1 × 10−5 and 300 after test computations.

Feedback Law

In designing UMI simulation, we define monitoring
points in the relevant flow domain. At the monitoring points,
output signals are evaluated both in ultrasonic measure-
ment and simulation. Feedback signals, derived from the
difference between these output signals, are applied to the
computation in order to compensate for the computational
error and to make the computational result converge to the
real flows. In the present study, the real flow is modeled
as the standard numerical solution, and the error of UMI
simulation is due to an inaccurate boundary condition as
mentioned above. For the validation of UMI simulation,
we define two arrangements of monitoring points: 1) global
arrangement, all 675 grid points in the large rectangle re-
gion which covers the blood vessel near the aneurysm in
Fig. 2, and 2) local arrangement, all 325 points in the small
rectangle above the aneurysm in Fig. 2.

Figure 4 explains how we calculate the feedback signal.
The velocity vector obtained by the numerical simulation

FIGURE 4. Schematic diagram of calculation of feedback
signals.

is defined as uc, and that of the standard solution (model
of the real flow) is us. The purpose of the feedback is
to force the velocity uc to converge to us. Doppler ve-
locity of the blood flow is obtained with ultrasonic diag-
nostic equipment. The Doppler velocities of the numeri-
cal simulation and the standard solution, Vc and Vs, are
the projection of uc and us in the ultrasonic beam direc-
tion (a chain line in Fig. 4), respectively. Here, it should
be noted that Doppler velocities Vc and Vs each represent
only one component of the velocity vector, and, therefore,
it is not a straightforward task to reconstruct the veloc-
ity vectors from the Doppler velocities. In other words,
the velocity vector us is generally unknown in real ultra-
sonic measurement. In the staggered grid system used in
the SIMPLER method, node points for velocity compo-
nents u and v are shifted from the pressure node, “•”, in
half mesh size. Therefore, the velocity components at the
pressure node are evaluated by interpolation in the above
description. The origin of the ultrasonic beam, where ultra-
sound is emitted from the probe, is set at the same position
as that of the measurement (the center of the sector in
Fig. 1).

In this study, we deal with two feedback algorithms,
feedback to velocity field (feedback A) and feedback to
velocity and pressure fields (feedback B), as follows.

Feedback A: As the feedback signal, the artificial force
fv proportional to the difference between Doppler ve-
locities of the standard solution and UMI simulation is
applied to the Navier-Stokes equation in the direction of
the ultrasonic beam.

In this formula, the force fv is calculated by the following
equation:

fv = −Kvρ(Vc − Vs)u
′
max�S, (6)

where Kv is the feedback gain (nondimensional), u′
max is

the maximum average flow velocity of the blood at the
upstream boundary, and �S is an interfacial area of the
control volume of pressure. Referring to Fig. 4, if the com-
putational result Vc is smaller than Vs, the artificial force
fv has a positive value and accelerates the fluid along the
ultrasonic beam in UMI simulation to reduce the error. The
force fv is decomposed to the x-directional component fvx

and the y-directional component fvy , which are added to the
control volumes of u(i, j) and v(i, j) in the Navier-Stokes
equation, respectively.

Feedback B: In feedback A, artificial forces fvx and fvy not
only accelerate the fluid to reduce the error in velocity
but also increase the pressure of the control volume (i, j)
through the pressure equation derived from the equation
of continuity in the SIMPLER method.20 Hence, we in-
troduce additional feedback to the pressure equation to
counteract the effect of artificial force fv.
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In this formula, a source term sp, proportional to the
difference between the Doppler velocities, is added to the
pressure equation and calculated artificial force fv is added
to the Navier-Stokes equation in feedback A:

fv = −Kvρ(Vc − Vs)u′
max�S

sp = −Kpρ(Vc − Vs)�S
, (7)

where Kp is the feedback gain for the pressure (nondimen-
sional).

UMI simulation with feedback B is specified by the
combination of gains (Kv, Kp). Note that the special case
with Kp = 0 corresponds to feedback A, and Kv = Kp = 0
corresponds to the ordinary simulation without feedback.

Evaluation Method

In order to evaluate the accuracy of UMI simulation, we
define the error norm en for an arbitrary variable a, which
is the velocity component u, v , V, or the pressure p, by the
following equation:

en = 1

amaxT

∫
T

|acn(t) − asn(t)| dt, (8)

where T is the cardiac cycle, amax is the characteris-
tic value for normalization: amax = u′

max for velocity or
amax = ρu′

max
2 for pressure, where u′

max is the maximum
average flow velocity at the upstream boundary. Subscript
cn corresponds to UMI simulation or ordinary simulation,
and sn corresponds to the standard solution, respectively.
In the subscripts “cn” and “sn,” n is the index of the grid
point.

The average error norm ēN is evaluated over the moni-
toring points in a domain.

ēN = 1

N

∑
n

en. (9)

In this section, 675 monitoring points in the global ar-
rangement or 325 points in the local arrangement are used
for the calculation of ēN , and they are called ē675 or ē325,
respectively.

The optimum values of the gain Kv for feedback A and
the combination of gains (Kv, Kp) for feedback B are deter-
mined so that the average error norms ēN of some specified
variables take the minimum value over a number of trial
computations.

The accuracy of UMI simulation is evaluated by compar-
ing the average error norms ēN of UMI simulation for ve-
locity components, Doppler velocity, and pressure, against
those of the ordinary simulation without feedback.

Results and Discussion

The standard solution is first obtained from the numeri-
cal simulation with the upstream parabolic velocity profile.
Solid lines in Fig. 5 represent the velocity components and

FIGURE 5. Comparison of convergence with periodic solu-
tions regarding (a) x-directional velocity u, (b) y-directional
velocity v, (c) Doppler velocity V, and (d) pressure p (all results
are nondimensional).
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FIGURE 6. (a) Velocity vectors and pressure distribution and
(b) color Doppler image of the standard solution at t = 0.35s
in deceleration phase (all results are nondimensional).

the pressure for 32 s (about 28 cardiac cycles) at one mon-
itoring point R (see Fig. 2). The results of UMI simulation
shown by dotted lines are discussed later in this section. In
26 cardiac cycles, the solution converges to almost periodic
oscillation (black arrows). We define the standard solution
as the repetition of the result in the 26th cardiac cycle.
Figure 6 shows velocity vectors, pressure distribution, and
the color Doppler image of the standard solution at t = 0.35
s in the deceleration phase (see Fig. 3). It is noted that the
color Doppler image representing only one velocity com-
ponent does not show the structure of the blood velocity
vector field. For example, vortices above the aneurysm are
displayed by a mosaic pattern consisting of red and blue
regions (as can be seen in the white rectangle in Fig. 6).

UMI simulation was performed with the above-
mentioned standard solution and the feedback algorithm
A in Eq. (6), as well as with the feedback algorithm B in
Eq. (7). For a given value of Kv in feedback A or (Kv, Kp)
in feedback B, time-dependent calculation was carried out
until periodical oscillations were obtained, and the average
error norm ēN was evaluated using a periodical solution.
Figure 7 shows the average error norm ē675 with the global
arrangement of the monitoring points (see Fig. 2) for the
Doppler velocity, x and y-directional velocity components,
and the pressure as a function of the gain Kv. Note that we
investigated only the limited case of Kv = Kp for feedback
B. Study of the full (Kv, Kp) parameter plane remains as a
future work.

In the figures on the left-hand side of Fig. 7 (a), the
average error norm ē675 of the Doppler velocity for feedback
A monotonically decreases as the feedback gain increases
in the range of 0 ≤ Kv ≤ 7. Over Kv = 8, UMI simulation
begins to diverge, and ē675 shows a steep increase. The
figures on the right-hand side are magnifications of the
region 0 ≤ Kv ≤ 1 in order to show the result of feedback B
clearly. The result for feedback B shows a faster reduction,
but it undergoes sudden divergence at some critical value of
Kv. The average error norms ē675 of the velocity components
u and v show changes similar to that of the Doppler velocity
[Fig. 7(b)]. The error of the pressure, however, takes the
minimum value at a relatively small Kv value [Fig. 7(c)].
Considering these results, the optimum gains for feedback
A and B are determined with the average error norms ēN for
the l1 norm (|u| + |v|) of the velocity vector. The optimum
feedback gain Kv with the global arrangement is determined
as Kv = 7 for feedback A, and Kv = Kp = 0.3 for feedback
B. Note that the optimum gains change if the average error
norm of the pressure is taken into account, especially for
feedback A.

In order to evaluate the validity of the present UMI sim-
ulation, the error of UMI simulation against the standard
solution is compared with that of the ordinary numerical
simulation. The color Doppler images around an aneurysm
at t = 0.35 s in the deceleration phase of the cardiac cycle
are compared in Fig. 8. The mosaic pattern of the aneurysm,
which implies a disturbed flow structure such as vortices
(see Fig. 6), is different between the ordinary simulation
[Fig. 8(b)] and the standard solution [Fig. 8(a)] since the up-
stream boundary condition is different. On the other hand,
the color Doppler images of UMI simulations with both
feedback A [Fig. 8(c)] and B [Fig. 8(d)] closely resem-
ble that of the standard solution in the aneurysm despite
the upstream boundary condition being different. The same
mosaic pattern in the aneurysm implies correct reproduction
of the blood flow structure.

Variations of the velocity components and the pressure
at the monitoring point R (see Fig. 2) in a cardiac cycle are
compared between the standard solution, UMI simulations
of feedback A and B, and the ordinary simulation in Fig. 9.
Due to the incorrect upstream boundary condition, the re-
sult of the ordinary simulation is different from that of the
standard solution. In contrast, in spite of the same incor-
rect boundary condition, excellent agreement is attained by
UMI simulation with feedback A with regard to the veloc-
ity components u and v , as well as Doppler velocity. UMI
simulation with feedback B also shows results very close to
those of the standard solution except for u. In the velocity
components of UMI simulation with feedback B, Doppler
velocity V agrees with that of the standard solution the best
since this study, uses it as the output signal for the feedback
artificial force is applied in the ultrasonic beam direction
in UMI simulation. The y-directional velocity component v
shows better agreement with the standard solution than does
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FIGURE 7. Variation of average error norm ē675 of (a) Doppler velocity, (b) x, y-directional velocity components, and (c) pressure
against feedback gain Kv in UMI simulation with global arrangement of monitoring points. Figures on right-hand side show
0 ≤ Kv ≤ 1.0 magnification.

the x-directional velocity component u. This is because the
origin of the ultrasonic beam is away from the monitoring
points in the y-direction and, therefore, the Doppler velocity
at each monitoring point mainly consists of the y-directional
velocity component. This means that the computational ac-
curacy of the x-directional velocity component could pos-
sibly be improved if the origin of the ultrasonic beam were
moved to change the angle of the ultrasonic beam so that the
Doppler velocity would contain more of the x-directional
velocity component. The variation of the pressure clearly
shows the difference between the two feedback formulae.
The result of feedback formula A shows poorer agreement
than the ordinary simulation, while that of feedback formula

B shows fairly good agreement with that of the standard
solution. Generally, feedback A can reproduce the velocity
components excellently while feedback B can reproduce
both the velocity components and the pressure.

Figure 10 compares the distribution of the error norm
in the blood vessel around the aneurysm for the velocity
components and pressure between the ordinary simulation
and UMI simulation with two monitoring point arrange-
ments and two feedback formulae. In the result of the
ordinary simulation, the area of large error shown in red
appears in the aneurysm for all velocity components and in
the upper side of the blood vessel for x-directional veloc-
ity component u. For the pressure, an area with relatively
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FIGURE 8. Comparison of color Doppler images at t = 0.35s
in deceleration phase among (a) standard solution, (b) ordi-
nary simulation, and (c) and (d) UMI simulations with feed-
back A and B, respectively. Feedback A: Kv = 7, feedback B:
(Kv, Kp) = (0.3, 0.3). Color bar is the same as that in Fig. 6 (b).

large error exists in the downstream region of the compu-
tational domain. In the result of feedback A with global
arrangement, a fairly good result is obtained for all the
velocity components. The error norm, indicated by blue,
is reduced to almost zero. In the result for the pressure,
however, the error is larger than that of the ordinary sim-
ulation in the aneurysm. A better result for the pressure

FIGURE 9. Comparison of periodic solutions of (a) x-
directional velocity u, (b) y-directional velocity v, (c) Doppler
velocity V, and (d) pressure p at monitoring point R (all re-
sults are nondimensional). Feedback A: Kv = 7, feedback B:
(Kv, Kp) = (0.3, 0.3).

is obtained with feedback formula B with global arrange-
ment. The errors of the y-directional velocity component v
and the Doppler velocity V are almost the same as those
in the former case, although the error of the x-directional
velocity component u is somewhat larger than that in the
former case but still smaller than that of the ordinary
simulation.
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FIGURE 10. Comparison of error norms between the ordinary simulation and UMI simulations with feedback A and B using global
and local arrangements.

The results of UMI simulation with the local arrange-
ment of the monitoring points are also given in Fig. 10.
For obtaining the optimum gain for the case of local ar-
rangement, systematic computation was performed in a
way similar to that in Fig. 7. With the local arrangement of
the monitoring points (Fig. 2), the optimum gains, which
minimalize the average error norms ē325 for the l1 norm
(|u| + |v|) of the velocity vector, is Kv = 8 for feedback A
and Kv = Kp = 0.3 for feedback B. In all results, reduction
of the error norm en is significant in the aneurysm where
the monitoring points are arranged. As has been mentioned,
feedback A gives a better result for x-directional velocity
u, while feedback B is better for the pressure p.

Table 2 summarizes the average error norms of velocity
components and pressure normalized with the results of the
ordinary simulation. Note that the smallest error in each
comparison is shaded. The smallest errors of ē675 for the
velocity components are obtained by feedback A using the
global arrangement of the monitoring points. In this case,
UMI simulation reduces the error ē675 to 8% for u, 7% for v ,

and 2% for V of those of the ordinary simulation. Compar-
ison between the results with feedback formulae A and B
reveals that feedback A is superior to feedback B for repro-
duction of the velocity components, but is inferior for the re-
production of the pressure. UMI simulation with feedback B
using the global arrangement of monitoring points reduces
the error ē675 to 32% for p of that of the ordinary simulation.
As for the arrangement of the monitoring points, the local
arrangement, which seems more realistic in practical ap-
plication of UMI simulation using color Doppler measure-
ment, yields a poorer result than the global arrangement for
the global error ē675, but gives comparatively good results
if evaluated by the localized error ē325. This implies that we
may locally arrange the monitoring points in the region of
concern.

Finally, the computational load of UMI simulation is dis-
cussed in comparison with ordinary simulation. In Fig. 5,
the dotted lines represent the velocity components and the
pressure of the result of UMI simulation with feedback B of
the gain (Kv, Kp) = (0.3, 0.3) using the global arrangement
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TABLE 2. Comparison of average error norm.

Monitoring point
arrangement Feedback u v V p

ē 675

None Nonea 1 1 1 1
Global A 0.078 0.069 0.015 0.997

B 0.224 0170 0.102 0.315
Local A 0.279 0.152 0.217 0.482

B 0.503 0.216 0.354 0.330
ē 325

None Nonea 1 1 1 1
Global A 0.066 0.036 0.016 1.701

B 0.223 0.137 0.107 0.358
Local A 0.093 0.047 0.012 0.935

B 0.229 0.113 0.085 0.312

aOrdinary simulation.

of the monitoring points. The periodic solution is obtained
in eight cycles (see gray arrows in Fig. 5), implying that
UMI simulation requires less than one-third the computa-
tional time steps than the ordinary simulation for 26 cycles
to obtain steady oscillation. As for computational time,
however, the standard solution requires 4500 s for one car-
diac cycle T in comparison with UMI simulation, which
requires 6300 s. The time required by UMI simulation
is 1.4 times longer than that for the ordinary simulation
for 1 cardiac cycle. Consequently, UMI simulation short-
ens the computational time to obtain the periodic solution
by a factor of 0.4. It is noted that computational load of
UMI simulation depends on the feedback formula and the
number of monitoring points. UMI simulation with feed-
back B requires more computational time than that with
feedback formula A. For example, UMI simulation using
feedback formula A with the global arrangement of mon-
itoring points takes 5000 s for one cardiac cycle, which
is slightly longer than the time required by the ordinary
simulation.

FIGURE 11. Computational grid used for UMI simulation us-
ing real color Doppler measurement. The marked numbers are
the length along the blood vessel wall measured from the up-
stream boundary.

UMI SIMULATION USING REAL COLOR
DOPPLER MEASUREMENT

Computational Method

In this section, we perform UMI simulation using real
color Doppler measurement. The medical data of the pa-
tient, instrument, and equipment are all identical to those of
the previous section. As a fundamental consideration, the
analysis is limited to a two-dimensional flow problem. The
result of UMI simulation is compared with those of the ordi-
nary simulation and the real measurement. Color Doppler
images were obtained at a center frequency of 4.4 MHz
and a pulse repetition frequency of 4 kHz (see Fig. 1). The
Doppler velocity V of an arbitrary point is determined from
the intensity of color, red for positive velocity and blue for
negative velocity digitized into 256 grades using the color
bar at upper right of Fig. 1.

For computation, we use grid C, which is twice as fine
in each direction as grid B of the former section in order
to depict the blood vessel shape in detail. The monitor-
ing points are set at the grid points in the white rectangle
in Fig. 11. The total number of the monitoring points is
864 with 36 × 24 points in each direction. In Fig. 1, the
rectangle, where the monitoring points are placed, consists
of 141 × 93 pixels. The time step of UMI simulation is
determined as �t = 0.033 s since the measurement data is
obtained at that time interval. The uniform velocity profile
is used at the upstream boundary condition. The residual at
convergence is 1 × 10−5 and the maximum iteration num-
ber is 500. Two feedback formulae, A and B, are used
in UMI simulation. Based on the result of the previous
section, the gain Kv is determined as the maximum value
which does not result in divergence of the computation.
We performed UMI simulation using color Doppler im-
ages at the diagnosis of 6 cardiac cycles to obtain the final
convergent solution. The timing when the maximum flow
volume occurs in UMI simulation (t = 0.23 s) is designed
to coincide with the measurement for synchronization.

Results and Discussion

The gains are determined as Kv = 1.0 for feedback A
and Kv = Kp = 0.2 for feedback B after a number of trial
computations. We are concerned here with the results in the
final 6th cycle of UMI simulation and the corresponding
ultrasound measurement, as well as that of the ordinary
simulation in the 20th cycle in steady oscillation.

Figure 12 shows a comparison of the color Doppler
images obtained by the color Doppler measurement, the
ordinary simulation, and UMI simulations at t = 0.38 s in
the deceleration phase as an example. The color Doppler
image of the ordinary simulation is different from that of
the measurement. The complicated mosaic pattern arising
in the aneurysm in Fig. 12 (a) cannot be clearly seen in
the ordinary simulation. In spite of the same condition as
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FIGURE 12. Comparison of color Doppler images at t = 0.38 s
in deceleration phase among (a) real color Doppler image,
(b) ordinary simulation, and (c) and (d) UMI simulations with
feedback A and B of the real color Doppler data, respectively.
Feedback A: Kv = 1.0, feedback B: (Kv, Kp) = (0.2, 0.2).

TABLE 3. Comparison of average error norm of
Doppler velocity.

Average error norm ē864

Ordinary simulation 1
UMI simulation

Feedback A 0.483
Feedback B 0.511

the ordinary simulation except for the feedback, the color
Doppler images of UMI simulations in Figs. 12(c) and
(d) closely resemble that of the measurement including
the mosaic pattern. We calculated average error norm ē864

of Doppler velocity in the monitoring region as shown in
Table 3. UMI simulation reduces the difference between
the real color Doppler measurement and the ordinary sim-
ulation by a factor of 0.48 for feedback A or 0.51 for
feedback B.

UMI simulation with feedback formula A reproduces
the real measurement, including the aliasing [a white arrow
in Fig. 12 (a)]. Here, aliasing indicated by a color different
from the proper one occurs in the case in which the Doppler
shift frequency exceeds one-half the pulse repetition fre-
quency, which means that there is an excess of measurable
maximum flow velocity and an incorrect result. Figure 13
shows the absolute value of the average instantaneous feed-
back intensity | fv| at each monitoring point viewed from
the direction of the arrow in Fig. 11 for the same condition
as Fig. 12. | fv| is the average absolute value of fv during
the iteration steps at a time step. In Fig. 13, the artificial
force | fv| is large in the regions where the aliasing occurs
(denoted with a white arrow) because large artificial forces
are applied to compensate for the sudden velocity change
due to aliasing. This means a peculiarly large feedback
signal in UMI simulation can be used as an index of incor-
rect measurement such as aliasing. Improvement of UMI
simulation using this information remains for future study.

By the first-order numerical differentiation of the com-
putational result of the velocity component, the wall shear
stress τ is calculated along the vessel wall with the
aneurysm. Since the distribution of the wall shear stress
shows an unnatural jagged shape because of the stepped-
shape vessel wall defined by the orthogonal grid system, the
result is smoothed by averaging five adjacent data points.
Figures 14(a) and (b) show distribution of the time-averaged
wall shear stress τ av and the RMS value τ rms of the wall
shear stress in the aneurysm along the vessel wall mea-
sured from the upstream boundary as shown in Fig. 11.
Comparison of those results reveals that a substantial dif-
ference exists between the results of time-averaged wall
shear stress distributions but not those of the RMS values.
The results of UMI simulations are probably better than
that of the ordinary simulation. The wall shear stress is
similar to that of the simulation with an aortic aneurysm
by Finol and Amon.4 However, we cannot say much about
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FIGURE 13. Average instantaneous feedback intensity with (a)
feedback A and (b) feedback B at t = 0.38 s in deceleration
phase (nondimensional).

the validity of the results since there is no measurement
data for the real wall shear stress distribution and the as-
sumption of two-dimensionality limits the validity of the
present model. Further research is needed, including three-
dimensional analysis and verification by experiment.

CONCLUSIONS

In this paper we investigated fundamental characteristics
of the Ultrasonic-Measurement-Integrated (UMI) simula-
tion of blood flow in the aorta as a key issue to develop ad-
vanced medical diagnosis and treatment equipment. A UMI
simulation was performed for a two-dimensional model
problem using a standard numerical solution instead of the
result of real ultrasonic measurement. Particularly, the ef-
fect of an incorrect upstream boundary velocity profile on
the simulation result was investigated.

Results obtained in this study can be summarized as
follows. For feedback formula A, by which artificial force
is applied to the momentum equation to compensate for
the error of the Doppler velocity between the numerical
simulation and the standard solution, the error in velocity
is significantly reduced in UMI simulation, but the error
in pressure is intensified more than in the case of ordinary
simulation. For feedback formula B, by which additional
correction of the pressure equation is applied in feedback

FIGURE 14. (a) Time-averaged wall shear stress τav and (b)
RMS value τrms along the vessel wall (all results are nondi-
mensional).

formula A, the error is reduced both in velocity and pressure
in comparison with the ordinary simulation. Feedback B is
more sensitive to the change of the feedback gain than
feedback A.

Placement of the monitoring points in a partial domain
effectively reduces the error in that part. UMI simulation
requires additional computational time for feedback, but en-
hancement of convergence to the final solution results in a
reduction of total computational time. Finally, UMI simula-
tions with real color Doppler measurement were performed
showing good agreement with the measurement.

The present study has confirmed the potential of UMI
simulation for the reproduction of real blood flows by com-
bining ultrasonic diagnostic equipment and a computer. It
is essential to extend UMI simulation to three-dimensional
problems and to perform complete verification theoreti-
cally, numerically, and experimentally in order to apply
UMI simulation to the development of advanced medical
diagnostic and treatment equipment.
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