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Numerical Study on Variation of Feedback Methods in

Ultrasonic-Measurement-Integrated Simulation of Blood Flow in

the Aneurysmal Aorta∗

Kenichi FUNAMOTO∗∗, Toshiyuki HAYASE∗∗∗, Yoshifumi SAIJO∗∗∗∗ and Tomoyuki YAMBE∗∗∗∗

The complicated relationships between hemodynamics and aneurysms have been inves-
tigated intensively. However, existing methodologies have inherent limitations in providing
real blood flow fields. The authors have proposed Ultrasonic-Measurement-Integrated (UMI)
simulation, in which the feedback signals lead to convergence of the calculated blood flow
structure to the real one even with incorrect boundary/initial conditions. In UMI simulation,
determination of the feedback law is substantially important, but detailed particulars remain
to be accounted for. In this paper, first, the effects of density of feedback points and feed-
back domains are systematically investigated. Improvement of computational accuracy in
the feedback domain is achieved even in low density of feedback points of 25%, and such
improvement persists in the downstream region. Secondly, the most effective combination of
feedback gains for momentum and pressure equations is investigated, confirming the validity
of the simple condition to use the same value for the velocity and pressure gains.

Key Words: Bio-Fluid Mechanics, Computational Fluid Dynamics, Flow Visualiza-
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Feedback Law, Blood Flow, Aneurysm

1. Introduction

Aortic aneurysm is a circulatory disease, which is
caused by degeneration of a blood vessel, resulting in its
extending like a balloon. The complicated relationships
between hemodynamics and aneurysms have been eluci-
dated by experimental measurement and numerical sim-
ulation. From the macro point of view, hemodynamic
stresses such as wall shear stress and pressure distribu-
tion on the blood vessel wall in an aneurysm play im-
portant roles in the development, progress and rupture of
aneurysms(1) – (4). At the cell level, it is reported that the
endothelial cells of the blood vessel respond to low wall
shear stress and large spatial gradients(5), (6). However,

∗ Received 9th June, 2005 (No. 05-4071)
∗∗ Graduate School of Engineering, Tohoku University, 6–6–

01 Aramaki-Aoba, Aoba-ku, Sendai 980–8579, Japan
∗∗∗ Institute of Fluid Science, Tohoku University, 2–1–1

Katahira, Aoba-ku, Sendai 980–8577, Japan.
E-mail: hayase@ifs.tohoku.ac.jp

∗∗∗∗ Institute of Development, Aging and Cancer, Tohoku
University, 4–1 Seiryo-cho, Aoba-ku, Sendai 980–8575,
Japan

there is presently no criterion indicative of the advisability
of surgery except for empirical indications such as the size
or the aspect ratio(7), (8).

For the development of more accurate diagnosis or
treatment of aneurysms, a method to obtain detailed hemo-
dynamic data regarding the aneurysm is essential. With
existing medical imaging techniques such as MRI, CT and
ultrasonography, it is difficult to obtain detailed informa-
tion of the blood flow structure due to the limitations of
each method. To obtain comprehensive information, many
studies have been conducted with a combination of mea-
surement and numerical simulation; for example, blood
flow simulation has been carried out using realistic ves-
sel geometries obtained by measurement(9), (10). However,
such research did not pay much attention to the problem of
specification of the boundary conditions. Boundary condi-
tions are a substantive and indispensable issue for numer-
ical simulation since they usually affect the computational
results, especially for the blood flow in a complicated ge-
ometry(11), (12). Nowadays, owing to the improvement of
MR angiography, the velocity profile on the cross-section
of a blood vessel can be obtained. Some papers have
dealt with the numerical simulation in which realistic ve-

Series C, Vol. 49, No. 1, 2006 JSME International Journal



145

locity profiles are applied at the upstream boundary and
in which realistic vessel geometries are employed(12), (13).
Marshall et al.(13) carried out a computational fluid dy-
namics study in a healthy and stenosed rigid model of
the carotid bifurcation with realistic boundary conditions
based on MR measurement data and revealed that dif-
ferences existed between the results obtained by compu-
tation and those forthcoming from measurement. Their
study also demonstrated the efficacy of numerical simula-
tion(13). However, since the precision of MR measurement
is still not so high(12) – (14), error may be introduced to the
numerical simulation, and thus calculated hemodynamics
inevitably includes error. Hence, a method to reduce the
error of the calculated flow is required in order to realize
advanced accurate diagnosis and treatment.

For this purpose, we have proposed Ultrasonic-
Measurement-Integrated (UMI) simulation(15), introduc-
ing the concept of flow observer to blood flow simula-
tion to reproduce the real blood flow numerically with
the aid of feedback from measurement(16) – (18). In other
fields, Hayase et al. applied flow observer to a turbulent
flow through a square duct(16), and Nisugi et al. devel-
oped a hybrid wind tunnel and investigated the flow with
a Karman vortex street(17), (18). Note that, the UMI sim-
ulation treated in this paper is different from the authors’
other work on turbulent flow or Karman vortex street men-
tioned above in the respect that the present work assumes
incorrect boundary condition. A block diagram of UMI
simulation is shown in Fig. 1. This methodology inte-
grates ultrasonic measurement and numerical simulation
by feedback which is determined from the difference be-
tween the two methods and applied to the simulation. Ul-
trasonic measurement is the most widely available since
the equipment used is relatively inexpensive and com-
pact. Color Doppler imaging(19) enables us to display real-
time images of the vessel configuration by reconstructing
time delays and magnitudes of the echo of the ultrasonic
beam. The velocity component in the ultrasonic beam di-
rection (Doppler velocity) can also be obtained by mea-
suring the Doppler shift frequency. However, realistic
three-dimensional blood flow structure and pressure dis-
tribution cannot be directly obtained by ultrasonic mea-
surement. Though many investigations have been carried
out(20) – (22), there are various limitations such as the direct
effects of noise and the sensitivity of the positioning of the
Doppler transducer on data acquisition or the assumption

Fig. 1 Schematic diagram of UMI simulation

of symmetrical flow in the calculation. No existing sys-
tem provides complete information on blood flow in real
time. In UMI simulation, numerical simulation is first car-
ried out with assumed boundary conditions. At selected
grid points, defined as feedback points, the discrepancy
between the measured Doppler velocity and the one esti-
mated by numerical simulation is evaluated, and then feed-
back signals are generated from it based on the feedback
law. These signals are fed back to the governing equations
of the numerical simulation as a source term in order to
compensate for the difference and to realize convergence
of the computational result to the real flow.

The feedback law is crucially important in UMI sim-
ulation, but its design depends on the performer and is
determined through trial and error. Detailed particulars
remain to be accounted for. In a former study(15), the au-
thors numerically investigated the efficiency of UMI sim-
ulation using a two-dimensional model problem of blood
flow in an aneurysmal aorta. The work defined two rect-
angular feedback domains, which covered an aneurysm or
the blood vessel around the aneurysm, and applied feed-
back at all grid points in those domains. Two formulae
were also introduced as feedback formulae in the UMI
simulation: In one formula (feedback A), feedback was
applied only to the momentum equation, while in the other
formula (feedback B), an additional feedback signal was
also applied to the pressure equation.

The present paper deals with further investigation of
the feedback law of UMI simulation using the same two-
dimensional model problem as that of the former study(15).
First, the effects of the arrangement of feedback points are
investigated. The density of feedback points is changed
in the two rectangular feedback domains. The location of
the feedback domain is also changed to investigate how
the feedback influences the upstream or downstream re-
gion of the feedback domain and the location of the most
effective position of the feedback domain for reproduction
of the blood flow in the aneurysm. Secondly, for feedback
formula B, the effect of feedback gains (Kv,Kp) on mo-
mentum and pressure equations is investigated. In the for-
mer study(15), for the sake of simplicity, limited conditions
Kv =Kp were investigated. In the present study, however,
the optimum combination of the multiple feedback gains
is investigated by changing them in two-dimensional pa-
rameter space.

2. Subject and Method for UMI Simulation

2. 1 Subject and measurement method
This paper deals with two-dimensional model blood

flow around a thoracic aneurysm. The subject (a 62-year-
old male patient with a chronic aortic aneurysm in his
descending aorta), as well as the measurement devices
and method [an ultrasound device (SONOS 5500, Philips
Medical Systems, Andover, MA, USA) with a trans-
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esophageal ultrasonic transducer (T6210, Philips Medi-
cal Systems, Andover, MA, USA)] in this study were the
same as those in the former work(15). Ultrasonic mea-
surement was carried out with a color Doppler imaging
technique from inside the esophagus. Note that color
Doppler ultrasonography measured the velocity compo-
nent in the ultrasonic beam direction as well as the blood
vessel configuration of descending aorta with a chronic
aneurysm(19). In this study, we used the measured vessel
configuration, not the measured Doppler velocity, since
the latter did not provide data on the velocity vector or
pressure which were necessary to evaluate the accuracy of
UMI simulation. Alternatively, we defined a standard so-
lution of the numerical simulation with a supposed bound-
ary condition as a model of the real blood flow and used
the Doppler velocity calculated from the standard solution
for feedback in UMI simulation. We performed UMI sim-
ulation and ordinary simulation using the same geometry
as the standard solution but different boundary condition.
UMI simulation using real color Doppler measurement
was presented in the earlier report(15).

2. 2 Numerical simulation
Though intravascular blood flow in vivo has a com-

plex three-dimensional structure, we assumed a two-
dimensional flow for the fundamental study of UMI sim-
ulation. Governing equations for a two-dimensional in-
compressible and viscous fluid flow are the Navier-Stokes
equations,

ρ

(
∂u
∂t
+
(
u ·grad

)
u
)
=−gradp+µ∇2u, (1)

and the equation of continuity,

divu=0, (2)

where u = (u,v) is the velocity vector, p is the pressure.
The governing equations were discretized by means of
the finite volume method and solved with an algorithm
similar to the SIMPLER method(15), (23), (24). In the SIM-
PLER method, the x-directional momentum equation is
expressed as

ui=
( ∑

Bju j+S i

)
/Bi+di ( pi− pi−1) , (3)

where (
∑

Bj u j) means the summation of the four values
circumfusing ui. By substituting Eq. (3) and similar equa-
tions for y-directional momentum in the integrated form
of the equation of continuity, the pressure equation is ob-
tained as

ai pi =
∑

aj p j+ spi, (4)

where (
∑

aj p j) means the summation of the values at
four adjacent nodes. The notations of the parameters in
Eqs. (3) and (4), as well as supplementary pressure correc-
tion equations and velocity correction procedure in SIM-
PLER method were explained in the Ref. (24). Feedback
signals added to Eqs. (3) and (4) in the governing equa-
tions of UMI simulation will be explained later.

Table 1 shows the parameters used in this computa-
tion. Cardiac cycle T was calculated from the heart rate.
The upstream shape of the blood vessel was assumed to
be cylindrical, and the diameter D was calculated from
the image. Since the upstream boundary was located at
some distance from the aneurysm, we considered that the
blood vessel could be assumed to be cylindrical. Referring
to the blood flow measurement data(25), we assumed that
30% of the cardiac output flowed into the branches and
the remaining 70% (6.42×10−5 m3s−1) flowed into the de-
scending aorta. The variation of the flow rate q was mod-
eled as shown in Fig. 2 according to the MR measurement
by Olufsen et al.(26) The maximum average flow velocity
at the upstream boundary u′max was determined by divid-
ing the maximum flow rate by the circular cross-sectional
area of the inlet (see Table 1). Blood was assumed to be
Newtonian fluid with a density ρ= 1.0×103 kgm−3 and a
dynamic viscosity µ=4.0×10−3 Pas within normal range.
All the values were nondimensionalized with the entrance
vessel diameter D, the maximum average flow velocity at
the upstream boundary u′max, and the kinematic viscosity
ν of the blood. Note that we used u′max in normalizing
the feedback signal or error norms. From here on, the
same symbols are used for both dimensional and nondi-
mensional values since it does not cause confusion.

The B-mode image of the blood vessel obtained by ul-

Table 1 Computational conditions

Fig. 2 Time-variation of flow rate (dimensional) and cross-
sectional average flow velocity at upstream boundary
(nondimensional)
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Fig. 3 Computational domain and feedback domains (nondi-
mensional)

trasonic diagnostic equipment was digitized to extract the
cross-sectional surface manually, and the pixel data was
allocated to define a two-dimensional computational do-
main as shown in Fig. 3. The shape of the blood vessel in
the figure was extended from the ultrasonic image around
3.5 cm (1.24) in the upstream direction and around 1.5 cm
(0.53) in the downstream direction in order to perform nu-
merical simulation (see Fig. 3, the right side is upstream).
The x-axis was defined in the flow direction with the ori-
gin at the upstream boundary, and the y-axis was defined
as shown in Fig. 3. We introduced a staggered grid system
with 65× 40 grid points in x and y directions with uni-
form grid spacing of 1.487×10−3 m as a compromise be-
tween reproducibility of the blood vessel shape and com-
putational time.

With regard to the upstream boundary condition, we
assumed a Poiseuille flow, a parallel flow with a parabolic
profile in x-directional velocity for the standard solution
or the model of real flow. On the other hand, we assumed
a different upstream boundary condition with a uniform
parallel velocity profile in x-direction for the UMI simu-
lation and the ordinary simulation since we do not usually
know the correct boundary condition of the real flow. The
error was introduced in the UMI and ordinary simulations
against the standard solution. After test computations, the
maximum iteration number and the tolerance of residual
for convergence were determined as 300 and 1×10−5, re-
spectively.

2. 3 Feedback algorithms
In UMI simulation in this paper, we dealt with two

feedback formulae proposed in the former study(15): the
feedback to the velocity field (feedback A) and the feed-
back to the velocity and pressure fields (feedback B).
Feedback A applies the artificial force fv proportional to
the difference between Doppler velocity V of the standard
solution (model of the real flow) and that of the UMI sim-
ulation to the Navier-Stokes equations in the direction of
the ultrasonic beam (see Fig. 4). The artificial force fv is
calculated by the following equation:

Fig. 4 Calculation of feedback signal on staggered grid system

fv =−Kvρ(Vc−Vs) u′max∆S , (5)

where Kv is the feedback gain (nondimensional), Vc and
Vs are the Doppler velocities of UMI simulation and stan-
dard solution, which are projections of velocity vectors uc

and us in the ultrasonic beam direction as shown in Fig. 4,
respectively, u′max is the maximum average flow velocity
of the blood at the upstream boundary, and ∆S is an in-
terfacial area of the control volume of pressure. For in-
stance, in the case that Vc is smaller than Vs as shown in
Fig. 4, fv accelerates the fluid to reduce the discrepancy in
the ultrasonic beam direction in UMI simulation. In the
actual computational operation, fv is decomposed to the
x-directional and y-directional components, fvx and fvy,
which are added to the control volume of u(i, j) and v(i, j)
in each directional Navier-Stokes equation, respectively.

In feedback B, an additional feedback signal sp is in-
troduced to the pressure equation as the source term to
counteract the effect of the artificial force fv in the mo-
mentum equations. The signal sp is calculated by the fol-
lowing equation:

sp =−Kpρ(Vc−Vs)∆S , (6)

where Kp is the feedback gain for the pressure (nondimen-
sional). In Fig. 4, if the pressure in the control volume
of pressure p(i, j) increases by the addition of the feed-
back signal fv in Eq. (5), the source term sp in the pressure
equation acts to reduce the increased pressure. Further dis-
cussion on the calculation of the feedback signals is given
in the previous article(15).

UMI simulation is specified by the feedback gain Kv

for feedback A or by the combination of feedback gains
Kv and Kp for feedback B. Note that the special case of
feedback B with Kp = 0 means feedback A, and that with
Kv = Kp = 0 means the ordinary simulation without feed-
back.

We defined several sub-domains in which feedback
points were arranged in a flow domain as shown in Fig. 3.
In order to evaluate the effect of density of feedback points
on the computational accuracy of the blood flow fields
in the aneurysm, two feedback domains, G and L, which
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Table 2 Arrangements of feedback points, and optimum and
critical gains for feedback A and B

were the same as those in the previous study(15), were de-
fined. The domain L locally covered the aneurysmal re-
gion, while the domain G globally covered the aneurysm
including the main branch to investigate the effect of the
feedback on the computational accuracy of blood flow
field in main branch. In the two domains, density of
the feedback points was changed. The regions of global
and local feedback domains contained 675 and 325 grid
points, respectively. We defined the arrangement G1 as
that in which all the grid points in the fluid region of the
global domain G were assigned as feedback points. Con-
sequently, 546 out of 675 grid points were defined as feed-
back points in the G1 arrangement. In addition, arrange-
ments G2, G4 and G8 were defined so that feedback points
were located at every 2, 4, or 8 grid points in each coor-
dinate direction starting from the grid point at upper left
corner of domain G, respectively. The same procedure was
done for the local domain L, and arrangements termed L1,
L2, L3, L4, L6 and L8 were defined. Here, the density
of feedback points was calculated by dividing the number
of feedback points by the number of the grid points in the
fluid region in each feedback domain. Detailed informa-
tion on each arrangement is described in Table 2.

The other feedback domains, domain E, U and D,
which included almost the same number of grid points in
the fluid region as that of domain L, were defined in order
to verify the effects of the feedback in the upstream and
downstream regions of the feedback domains, and also to
investigate the effective position of the feedback domain
for reproduction of the blood flow in the aneurysm. For
purposes of comparison, we investigated using the E1, U1,
L1 and D1 arrangements consisting of all the fluid points
in the domains. The exact number of feedback points in
each feedback arrangement is described in Table 3.

As the Doppler velocity V is the velocity component
in the beam direction, the position of the origin of the ul-
trasonic beam affects the Doppler velocities at the feed-
back points and, therefore, the result of UMI simulation.
In this study, the origin of the ultrasonic beam was set at
the probe position in the ultrasonic measurement as shown

Table 3 Arrangements of feedback points, optimum and criti-
cal gains, and average error norms in local domain L

in Fig. 3, which was the same position as that in the previ-
ous study(15).

2. 4 Error evaluation
For the evaluation of UMI simulation, the error norm

en(a) was defined at the grid point n for an arbitrary vari-
able a, which may be the velocity vector u, the velocity
component u, v, or V , or pressure p, by the following equa-
tion:

en (a)=
1

amaxT

∫
T
|acn (t)−asn (t)|dt, (7)

where T is the cardiac cycle, | • | is the absolute value
for scalar variables or the l1 norm |u|+ |v| for the velocity
vector u,amax is the characteristic value for normalization:
amax =u′max for velocity or amax=ρu′max

2 for pressure. Sub-
script cn corresponds to the computation, i.e., UMI simu-
lation or ordinary simulation, at the grid point with index
n, and sn corresponds to the standard solution at the same
grid point. In addition, the average error norm ēΩ(a) was
defined over the monitoring points in a domain Ω by the
following equation:

ēΩ (a)=
1
N

∑
Xn∈Ω

en (a). (8)

The domainΩ is arbitrarily chosen for the purpose of eval-
uation. For example, all 675 or 325 grid points in the
global feedback domain G or local feedback domain L
were used for ēG(a) or ēL(a); grid points on each trans-
verse cross-section of the flow domain were used to cal-
culate the cross-sectional average error norm, ēC(x)(a). In
order to clearly demonstrate the reduction of error in UMI
simulation from that of the ordinary simulation, we intro-
duced normalized average error norm ēΩ*(a) as the aver-
age error norm of the UMI simulation divided by that of
the ordinary simulation.

The optimum gain for each feedback algorithm was
defined as the gain or the set of gains that minimized the
average error norm ēΩ(a) for the arbitrary variable a in
the feedback domain Ω by extending the definition of the
previous research(15).

3. Results and Discussion

All computations were performed using the super-
computer system SGI ORIGIN 2000 in the Advanced
Fluid Information Research Center, Institute of Fluid Sci-
ence, Tohoku University. Investigation of the effect of the
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density of feedback points in UMI simulations on compu-
tational accuracy in the domain was first carried out us-
ing two feedback domains and two feedback formulae.
The error norms were used for the evaluation. The ef-
fect of the location of feedback domain was then investi-
gated using four different arrangements of feedback points
by calculating the cross-sectional average error norm at
each transverse cross-section of the blood vessel. Lastly,
the assumption for feedback B of Kv = Kp was removed
and UMI simulation was performed by changing those
two feedback gains independently, searching the optimum
gains for the various average error norms. All computa-
tions were performed for a number of cardiac cycles until
the periodical solution was obtained.

3. 1 Density of feedback points
For evaluation of the effect of the density of feedback

points in the feedback point arrangements G and L (see
Fig. 3), the optimum and critical gains were first obtained
for each feedback point arrangement and feedback for-
mula. For UMI simulation with feedback A, Kp was fixed
at zero and Kv was increased from zero by increments of
0.1 until the computation diverged for each arrangement
of feedback points. Generally, as Kv increases, the av-
erage error norms of velocity components decrease and
converge to each constant value, though that of pressure
slightly increases. For feedback B, we searched in a lim-
ited condition of Kv =Kp here(15), changing Kv and Kp by
0.1 for each arrangement for the sake of simplicity. Study
of the full (Kv,Kp) parameter plane is discussed in a later
section. In this section, we defined the optimum gain at
which the average error norm ēΩ(u) of velocity vector u in
each feedback domain became minimum, and the critical
gain at which the computation diverged. Table 2 summa-
rizes the results for the cases investigated.

Figure 5 shows the streamlines at t= 0.35 s in the de-
celeration phase for the standard solution, the ordinary
simulation and the UMI simulation, respectively. In the
standard solution [Fig. 5 (a)], recirculation regions exist in
the blood vessel, and one large vortex is observed in the
aneurysm in this phase. Because of the different upstream
boundary condition, the streamlines of the ordinary sim-
ulation in Fig. 5 (b) are different from those of the stan-
dard solution in Fig. 5 (a), especially in the aneurysm. Fig-
ure 5 (c) shows the streamlines obtained by UMI simula-
tion with the optimum gain for feedback B using the G1
arrangement (see Table 2). Although the streamlines near
the upstream boundary are very similar to those of the or-
dinary simulation because of the same incorrect upstream
boundary condition, they become similar to those of the
standard solution in the feedback domain due to the effect
of the feedback.

Figure 6 compares the distributions of the error norms
for u, v, V and p in the global domain G between UMI sim-
ulations with feedback B using the G1, G2, G4, or G8 ar-

(a) Standard solution

(b) Ordinary simulation

(c) UMI simulation, G1 arrangement, (Kv,Kp)= (0.2,0.2)

Fig. 5 Comparison of streamlines at t=0.35 s in deceleration
phase between the standard solution, the ordinary
simulation and UMI simulation (nondimensional)

rangement of feedback points and the ordinary simulation
without feedback. In the ordinary simulation, a large error
shown by bright color arises in the domain G. On the other
hand, in the UMI simulation with the G1 arrangement, the
error is almost eliminated and the white region disappears
for all variables. Comparing the results of UMI simula-
tions with different arrangements, the greater the number
of feedback points, the better the computational accuracy.
As the interval between feedback points increases, rela-
tively large error occurs at the grid points which are not
the feedback points. However, even in UMI simulation
with the G8 arrangement using only 10 feedback points
(see Table 2), which is about 1/55 of G1 arrangement, im-
provement is still achieved in comparison with the ordi-
nary simulation.

The average error norms, ēG and ēL, in the global and
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Fig. 6 Distributions of error norm of each variable of UMI simulations with feedback B and
the ordinary simulation

local feedback domains were calculated for the UMI sim-
ulations with global arrangements (G1, G2, G4 and G8)
and local arrangements (L1, L2, L3, L4, L6 and L8) to in-
vestigate the change of improvement of the computational
accuracy resulting from the decrement of feedback points.
Figure 7 (a) and (b) show the average error norms of the
velocity vector u in domains G and L with the number
of feedback points, respectively. The computational accu-
racy of each UMI simulation depends on the arrangement
of feedback points as well as the domain where the er-
ror norm is evaluated. It is noted that feedback A and B
with global arrangement G result in almost the same pre-
cision in velocity field for more than 100 feedback points.
Comparing the average error norms with the L1 and G1
arrangements, indicated by dotted and solid circles, the
results are close for ēL(u) in Fig. 7 (b) but not for ēG(u)
in Fig. 7 (a); showing that the local arrangement provides
more improvement in the local feedback domain than in
the global feedback domain. The G2 arrangement pro-
vides more reduction of ēL(u) as well as ēG(u) than the L1

arrangement. In this study, the large error against the stan-
dard solution mainly occurred in the large branch above
the aneurysm as observed in Fig. 6, and it may deteriorate
the computational accuracy in the aneurysm of UMI sim-
ulation. Therefore, when the number of feedback points
is fixed, it is better to arrange feedback points covering
the region where large error exists even if the density of
feedback points decreases to some extent.

The results mentioned above were rearranged as a
function of the density of feedback points. Figure 8 shows
the average error norm normalized with that of the ordi-
nary simulation in the feedback domain G or L with the
density of feedback points. In Fig. 8, the two lines of
each feedback points arrangement exist in close proxim-
ity, showing sharp decrease of error norm of velocity vec-
tor as the density of feedback points increases in the range
of relatively low density. This implies that the error does
not increase much when the density of feedback points is
reduced from 1. The effect of anisotropic arrangement of
feedback points remains as a future work.
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(a) Error norm in global feedback domain

(b) Error norm in local feedback domain

Fig. 7 Average error norm of velocity vector of UMI
simulation as a function of number of feedback points

Fig. 8 Normalized average error norm of velocity vector in the
feedback domain as a function of density of feedback
points

The computational time for one cardiac cycle and the
cycles necessary to obtain periodic oscillations are shown
in Fig. 9. Concerning the computational time for 1 car-
diac cycle in Fig. 9 (a), UMI simulations with feedback
A take slightly longer time than the ordinary simulation
shown by a dotted line, while UMI simulations with feed-
back B require computational time about 1.5 times longer.

(a) Computational time for 1 cardiac cycle

(b) Cardiac cycles necessary to reach steady oscillation

Fig. 9 Relationship between the computational load to obtain
final solution and feedback points

Variation of the computational time with number or ar-
rangement of the feedback points is small. In contrast, the
number of cardiac cycles necessary to obtain steady oscil-
lation in Fig. 9 (b) substantially decreases with the density
of feedback points in UMI simulations. Eventually, the
UMI simulation requires more computational time for a
fixed time interval, but overall computational time needed
to obtain a final solution is less than that of the ordinary
simulation if the density of feedback points is sufficiently
large.

3. 2 Location of feedback domain
In the preceding section, we considered the number

of feedback points using two feedback domains, G and L,
near the aneurysm. In this section, we considered the loca-
tion of the feedback domain using four arrangements (E1,
U1, L1 and D1) of almost the same number of feedback
points in different locations in the flow domain (see Fig. 3
and Table 3).

In this section, optimum and critical gains were de-
termined with respect to the average error norm ēL(u) of
velocity vector u in local feedback domain L in order to
reproduce the blood flow field in the aneurysm. The re-
sults are summarized in Table 3. For all arrangements,
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feedback B gives better results than feedback A for both
the velocity vector and the pressure. The computational
accuracy depends on the location of the feedback domain.
UMI simulation with feedback B using the U1 arrange-
ment yields the best result for reproduction of the blood
flow field in the aneurysm; ēL(u) and ēL(p) are reduced
to 32% and 31%, respectively. UMI simulations with E
and U which are located upstream from the domain L re-
sult in the relatively good improvement than that of UMI
simulation using feedback domain D downstream from the
domain L.

The local effect of feedback in the whole computa-
tional domain was evaluated for UMI simulations with
feedback A with Kv = 0.2 and feedback B with Kv =Kp =

0.1. For each case, the average error norm was evalu-
ated for velocity vector and pressure over the transverse
cross-section as the domain Ω. Figures 10 and 11 show
the x-directional variations of the cross-sectional average
error norms for velocity vector and pressure of UMI sim-
ulation for those cases, respectively. Here, the grey zone
enwinding each line shows the region where the feedback
is applied. In Fig. 10 (a), improvement of computational
accuracy of velocity is achieved due to the application of
feedback A, except for the result using the D1 arrange-

(a) Velocity vector

(b) Pressure

Fig. 10 Average error norms at each cross-section of UMI
simulations with feedback formula A (Kv=0.2) and
ordinary simulation (nondimensional)

ment. The reason for the deterioration of UMI simulation
with feedback A using the D1 arrangement of feedback
points seems to be the adverse effect on the pressure by
the application of feedback signal fv. Figure 10 (b) shows
error in pressure extremely increases for domain D. This
figure also shows increase of the error of pressure in the
feedback domain of the UMI simulation with the E1 ar-
rangement, implying that pressure becomes incorrect in
case that the feedback domain is set near the upstream or
downstream boundary. On the other hand, feedback B in
Fig. 11 can cancel the error in the pressure field to some
extent owing to additional feedback to the pressure field
as well as the reduction of the error in the velocity field.
In Fig. 11 (b), improvement of computational accuracy is
observed in the pressure field in UMI simulation with the
E1 and D1 arrangements. Moreover, comparing results
obtained using domain L with those by the other domains,
it can be seen that domains E, U and D, which cover the
whole blood vessel, can provide lower minimum values of
ēC(x)(u). This is because those domains can improve the
computational accuracy on the whole cross-section of the
blood vessel in the domains.

According to the above discussion on variations of
the cross-sectional average error norms, it is confirmed

(a) Velocity vector

(b) Pressure

Fig. 11 Average error norms at each cross-section of UMI
simulations with feedback formula B (Kv=Kp=0.1)
and ordinary simulation (nondimensional)
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that the location of the feedback domain plays an impor-
tant role in UMI simulation. Assignment of the feedback
domain to the region upstream of the aneurysm is effec-
tive, while assignment of the domain to the region near
the upstream or downstream boundary should be avoided,
especially for UMI simulation with feedback A. In addi-
tion, it is also desirable that the feedback domain cover the
whole blood vessel to properly reproduce the blood flow
field. Though the arrangement of the feedback domain
exactly covering the aneurysmal part has possibility to re-
produce the blood flow field locally in the aneurysm, large
error surrounding the region may affect the computational
accuracy, and, therefore, arrangement of somewhat large
feedback domain probably gives a better result.

Comparing two feedback formulae, they have almost
the same reproducibility of the velocity field of the stan-
dard solution. Feedback B is superior to feedback A for
the reproduction of pressure field, but feedback B requires
more computational time than feedback A as described
above. Hence, it is necessary to choose a proper feedback
formula based on the purpose of analysis.

3. 3 Optimum feedback gain for feedback B
Although UMI simulation with feedback B has two

independent feedback gains, Kv and Kp, computations in
former sections were carried out in a limited condition
of Kv = Kp for simplicity. In this section, we performed
UMI simulation with feedback B using the L1 arrange-
ment without this limitation of the feedback gains. They
were changed over the combination of gains where the
convergent results were obtained: Kv was varied from 0 to
0.4, and Kp was 0 to 0.3 at intervals of 0.1. The results
were evaluated by the normalized average error norms,
ēL*(u), ēL*(p) and [ēL(u)+ ēL(p)]* in the feedback do-
main L.

Figure 12 shows the distributions of the normalized
average error norms of velocity vector, pressure, and their
sum as a function of two feedback gains. Here, each range
of the feedback gains in Fig. 12 is where convergent re-
sults can be obtained. Based on the normalized average
error norm of velocity vector ēL*(u), which is used in
the former section, the optimum combination of gains is
(Kv,Kp)= (0.4,0.3) with an error norm of 0.057 [circle in
Fig. 12 (a)]. In the limited condition that Kv = Kp in the
former sections, the optimum feedback gains are deter-
mined as (Kv,Kp)= (0.3,0.3) with an error norm of 0.058
[square in Fig. 12 (a)]. The difference between the errors
in these cases is very small. Of course, the different eval-
uations of the error norms result in different combinations
of optimum gains. For example, for the normalized av-
erage error norm of pressure ēL*(p), the optimum gains
become (Kv,Kp) = (0.1,0.1) with the error norm of 0.014
[circle in Fig. 12 (b)]. For the sum of the average error
norms of the velocity and the pressure [ēL(u)+ ēL(p)]*,
optimum feedback gains are (Kv,Kp) = (0.3,0.3) with the

(a) ēL*(u)

(b) ēL*(p)

(c) [ēL(u)+ ēL(p)]*

Fig. 12 Contours of normalized average error norms of
different parameters in a two-dimensional parameter
space of feedback gains (Kv,Kp) of feedback B with
L1 arrangement

error norm of 0.075 [circle in Fig. 12 (c)].
According to these results, it is confirmed that the op-

timization of feedback gains in the limited condition that
Kv =Kp provides an approximately optimum result for the
velocity, and exactly the optimum results for pressure and
the sum of these two. It means that the present result ob-
tained with the limitation of Kv = Kp in feedback B is al-
most valid in general condition without the limitation. The
limitation simplifies the searching of the optimum combi-
nation of feedback gains, probably introducing little sig-
nificant error.
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4. Conclusion

This paper has dealt with determination of the feed-
back in the Ultrasonic-Measurement-Integrated (UMI)
simulation in order to reproduce the blood flow field in
an aneurysm. A two-dimensional model problem for the
descending aorta with an aneurysm was investigated nu-
merically for two feedback formulae A and B: the former
applied feedback to the momentum equation and the lat-
ter to the momentum and pressure equations; for feedback
domains with different density of feedback points; for five
different feedback domains; and for different norms to
evaluate the error. It was revealed that UMI simulation
has a potential to reproduce accurate and detailed blood
flow fields in complicated blood geometries even if only
limited information of blood flow is obtained by measure-
ment. Results obtained in this study are summarized as
follows.

Effects of the density of feedback points were inves-
tigated for two feedback formulae. The density of feed-
back points determines the computational accuracy in the
domain, but the error does not increase much when the
density is reduced from 1. Though a locally concentrated
arrangement of feedback points in the targeted region in-
tensively improve the computational accuracy, it is also
affected by the error surrounding the region. Therefore, it
is probably better to arrange somewhat large feedback do-
main with which the whole blood vessel is covered includ-
ing the targeted region. The overall computational time
needed to obtain periodic oscillation is substantially re-
duced by increasing the density of the feedback points by
reduction of the transient state even with increased com-
putational time in a fixed time step.

The effect of feedback outside the feedback domain
was investigated by evaluating the error norm of each
cross-section. Except for the case using the feedback do-
main located near the downstream boundary, the error in
the velocity field decreases starting just before the feed-
back domain, continuing through it and persisting in some
distance in the downstream region. Concerning the pres-
sure field, feedback to the pressure equation moderates the
error caused by the feedback to the momentum equations.
This moderation in pressure field leads to convergence to
the standard solution even in the UMI simulation using the
feedback domain located near the upstream boundary.

As a fundamental consideration of optimization of
feedback gains of feedback B, UMI simulation was per-
formed for a two-dimensional parameter space of feed-
back gains for the momentum and pressure. Optimum
gains were obtained for different error norms for the veloc-
ity, pressure, and their sum. It was confirmed that the lim-
ited condition using same values for two feedback gains
for simplicity provides an approximate optimum result for
the velocity, and the exact optimum for pressure and the

sum of the two, justifying the limiting condition.
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