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A general numerical method with subgrid modeling has been developed for the compressible two-phase
fluids with arbitrary length scale of interfacial fluid structures. The method provides a framework for the
sharp interface method that can resolve an interface with a length scale sufficiently large than the grid size; it
can also accommodate the diffused interface modeling such as a two-fluid model. It can be an efficient method
for modeling complex multiphase phenomena in which the compressibility is not negligible, such as cavitations,
volcano eruptions, and meteor impact in atmosphere.

3.1. Introduction

Bubble growth and collapse are two basic phenomena in gas-liquid two-phase flows, including a boiling liquid,
cavitation bubbles induced by a pulsed energy source or a shock wave. A collapsing bubble may eventually reduce
its original size to a minute fraction, releasing a shock wave and light. In addition to bubbly flows, the phenomena
with different or/and changing length scales prevails in nature, such as the breakup of a water drop, fuel atomization,
the evolution of ocean waves, and volcano eruptions. The motivation of this work is to develop an accurate, efficient
and robust method for these problems with disparate length scales under general conditions under high pressure and
density ratios.

Consider an interface or a particle with the length scale, d, say the diameter of a spherical particle, or equivalent
diameter if non-spherical. Compared with the grid spacing that is restricted by computer resources, the length scales in
two-phase phenomena can be generally divided to three scales, under-resolved (d � Δx), transitional (d = O(Δx))
and resolved (d � Δx) scales, as shown in Fig. 3.1. According to the length scale that can be best modeled, numerical
methods developed for two-phase flows can be divided to two categories.

The sharp interface or resolved-interface method can deal with flows containing particles sufficiently larger than
the grid size. Popular methods under this category include the volume of fluid (VOF, 6,14,31), the level-set 23,34, among
many others (e.g. 9,13,39,40,44). These methods can resolve the interface sharply, in one or two cells. The VOF method,
more precisely, the volume-tracking method, can be formulated conservatively, but the level-set is generally non-
conservative. The VOF method encounters difficulties when dealing with particles in the transitional scale 5. The
treatment for subgrid particles is impossible by using up-to-date methods under this category.

For the simulation of under-resolved particles, d � Δx, the diffuse interface methods (two-fluid models) are
often used. The reader is referred to 20 for other unresolved-interface methods. These models assume a local mixture,
distinguishing at least the volume fraction of two phases in a grid cell. Each phase is assumed to have own pressure and
velocity or averaged/relaxed ones. This approximation allows strong numerical simplicity and eliminates the explicit
treatment for interfaces. Depending upon the assumption adopted in such a model, the number of governing equations
can vary from four to seven 1,2,7,21,30,35 for 1-D flows. In practice, these models are supplemented by instantaneous
relaxation or averaging procedures (e.g. 30,35). This approach can simulate two-phase phenomena with any length
scales, but an interface can only be resolved with a fairly wide stencil. An interface separating two pure fluids can
never be resolved sharply as it should be.

Consider a control volume or a cell consisting of two phases on a fixed Eulerian grid. It interacts with its neigh-
boring volumes that are occupied by either one or two phases, and simultaneously the two phases inside interact with
each other. The former represents the phenomena with length scales of the grid spacing and larger, and the latter
represents those with subgrid scales. The former inter-cell interactions are simulated in the Lagrangian frame, and the
latter internal or subgrid interactions is solved by a thermodynamic and dynamic subgrid closure model. A general
and robust subgrid closure model for two-material cells is proposed. The conservative quantities of the entire cell
are apportioned between two materials, and then pressure and velocity are fully or partially equilibrated by modeling
subgrid wave interactions. An unconditionally stable and entropy-satisfying solution of the processes has been suc-
cessfully found. The solution is valid for arbitrary level of relaxation. The model is numerically designed with care
for general materials, and is computationally efficient without recourse to subgrid iterations or sub-cycling in time.
The model is implemented and tested in the Lagrange-remap framework. The generality, robustness and efficiency of
the model make it useful in principle in algorithms, such as arbitrary Lagrangian-Eulerian methods, VOF methods and
even some mixture models, for compressible two-phase flow computations.

The modeling of the inter-cell interactions of the model, based on the Largrange-remap method, is detailed in
section 3.2.A. The Volume-tracking technique developed for subgrid-scale fluid particles is introduced in section 3.4.
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Figure 3.1. The length scale (d) compared with the grid spacing (Δx) in two-phase flows.

The thermodynamic and dynamic subgrid closure model is summazied in section 3.5.

3.2. Lagrange-remap strategy for single phase flows

In the cell-centered framework, each cell represents a Lagrange particle. No material interface will be treated in
this step. The change of the conservative quantities of the particle is governed only by the pressure and velocity at
its faces. The face pressure and velocity are evaluated from the effective quantities of pressure, density, velocity and
sound speed. Only the explicit method is summarized in this section, and the extension to the implicit method is quite
straightforward. The Lagrange-remap method consists of two steps:

1. the Lagrange step, in which the change of volume, momentum and energy are updated only from the pressure
and velocity at cell faces, to be introduced in section 3.2.A.;

2. the remap step, in which the Lagrange solutions of two phases are projected back to the Eulerian grid conserva-
tively, to be introduced in section 3.2.B.

The subgrid closure modeling is performed for the Lagrange cell, so it is used after the Lagrange step, but before the
remap step.

3.2.A. Lagrange step

For a Lagrangian cell, the change of volume in time Δt is given by the face velocity,

χv = Δt(u∗
i+1/2 − u∗

i−1/2). (3.1)

Similarly, the change of momentum and that of energy are given by

χm = −Δt(p∗i+1/2 − p∗i−1/2), (3.2)

χE = −Δt(p∗i+1/2u
∗
i+1/2 − p∗i−1/2u

∗
i−1/2), (3.3)

where p∗i+1/2 and u∗
i+1/2 are pressure and velocity at cell face between left cell i and right cell i + 1. They are given

by the acoustic Riemann solver (3.20) and (3.21). For achieving second-order accuracy in both time and space, the
left and right states used in the Riemann solver are advanced by Δt/2 and linearly extrapolated from the cell center,
say for pressure on the left,

pLi+1/2 = pi +ΦL
i [(∇p)i

Δx

2
+ (pt)i

Δt

2
] (3.4)

where time derivative pt = −ρa2ux. The velocity ui+1/2 can be obtained similarly by replacing p by u with u t =
−px/ρ. All quantities and their gradients are calculated from cell centers. Notice that it is the material time derivatives
that is used in (3.4). The slope limiter Φi is used to suppress possible numerical oscillations near sharp discontinuities.
The one-parameter family of minmod limiter is used, for θ ∈ [1, 2],

Φi =

{
1 gi = 0,

max(0,min(1, θ
gi−1/2

gi
, θ

gi+1/2

gi
)) gi �= 0.

(3.5)

where gi is the gradient of the function centered at cell i. The limiter is most dissipative for θ = 1 and is least
dissipative for θ = 2. We set θ = 1.6 for the slope limiter in the Lagrange step, ΦL

i .
Having the total change of volume, momentum and energy of the mixed cell, one may update the state of two

phases inside using the subgrid closure model introduced in section 3.5..
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Figure 3.2. The remap step: (a) first order remap; (b) second-order remap. Variable ξ represents a quantity to be remapped.

3.2.B. Remap step

All quantities of each phase updated in the Lagrange step are defined in the Lagrangian frame, and they are projected
to the original grid in the remap step in order to start a new cycle.

In the remap step, the conservative quantities in the Eulerian cell, i, are found by remapping the Lagrangian
solution. As shown in Fig.3.2, they are the sum of two portions, AB and BC. Supposing the Lagrangian solution is
piecewise constant, we get

ΩiU
n+1
i = (u∗

i−1/2Δt)Ũi−1 + (Ω̃i − u∗
i+1/2Δt)Ũi, (3.6)

where Ui denotes the vector of conservative quantities in cell i, and the variables with tilde denote those of the
Lagrange cell. The projection can be reformulated as the finite volume method

ΩiU
n+1
i = Ω̃iŨi −Δt(u∗

i+1/2U
∗
i+1/2 − u∗

i−1/2U
∗
i−1/2), (3.7)

where, for u∗
i+1/2 > 0,

U∗
i+1/2 = Ũi. (3.8)

The face velocity u∗
i+1/2 must be the same as that used in (3.1) and (3.3). If the conservative quantities in the remap

fluxes are defined from a piecewise constant state as (3.8), it is first order accurate. The second-order accuracy is
achieved by performing the linear interpolation 41 from the upstream cell,

U∗
i+1/2 = Ũi +Φr

i (∇Ũ)iΔ
+
i , (3.9)

where Φr
i is the slope limiter used in the remap step, and

Δ+
i = x̃i+ − x̃i = (xi+1/2 + uΔt/2)− (xi + uΔt) = (xi+1/2 − xi)− uΔt/2. (3.10)

The interpolated value is located at the center between the solid grid interface and the dashed particle interface, denoted
by empty circles in Fig. 3.2b. The state at this central point represents the average over the portion, CD. Numerically,
it is intensive quantities, R = (ρ, u, e), that are interpolated. The conservative quantities are then evaluated by,

U∗
i+1/2 = Ũ(R̃i +Φr

i (∇R̃)iΔ
+
i ), (3.11)

which is numerically more robust. The use of non-conservative state quantities neither reduces the order of accuracy,
nor violates the conservation laws since the overall conservation is always maintained in ( 3.7).

The method to enforce the monotonicity of the remap step is similar to the construction of a limiter in the MUSCL
approach for hyperbolic equations. We use the same one-parameter minmod slope limiter ( 3.5) with θ = 2 for Φr

i .

3.3. Lagrange-remap strategy for two-phase flows

3.3.A. The effective state of the two-phase cells

The individual states in the mixed cell have been updated in the subgrid closure model. Most numerical methods
adopted in the Lagrange step are designed for cell with one pressure and velocity. The effective state of the two-phase
cell must be constructed to be consistent with the subgrid closure.

3.3.A.1. Density

There is no ambiguity to define an effective density of a two-phase cell from mass conservation,

ρ̃ =
∑
k

αkρk. (3.1)

Although it is the unique solution that maintains the conservation of mass, it is not necessarily the most accurate one
in all flow situations. For instance, when a shock wave interacts with the mixed cell but travels in only one material,
the most accurate solution is that of the material. The effective density may be interpreted as a probability-weighted
value of two phase quantities, which holds for velocity and pressure as well.
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3.3.A.2. Velocity

The velocity can be calculated from the conservation of momentum,

Mũ =
∑
k

Mkuk, (3.2)

or
ũ =

∑
k

αkρkuk/
∑
k

αkρk. (3.3)

The effective velocity in the direction normal to an interface is reasonable since the time for velocity relaxation is
short 17, which is also seen from the decay rate in (3.24). However, it remains questionable for interfaces having a
strong shear discontinuity for multi-dimensional applications.

3.3.A.3. Pressure

The effective pressure is defined as
p̃ =

∑
k

αkpk. (3.4)

This definition is in consistent with the Gibbs relation for the mixed cell 10.

3.3.A.4. Sound speed

An effective sound speed of the mixed cell is necessary for modeling the effect of compressibility. Before deriving the
sound speed for the non-equilibrium subgrid closure proposed in last sections, two limit sound speeds are reviewed
first. One limit corresponds to the frozen sound speed, where no subgrid interactions or relaxations are taken into
account. Knowing constant αk resulted from equal volumetric strain, one may differentiate the pressure using the
equal strain assumption to get

ρ̃ã2 =
∑
k

αkρka
2
k. (3.5)

The assumption of equal volumetric strain itself is clearly incorrect if it is applied to a mixed cell of air and water for
instance, as commented by Benson 4. It generally leads to a pressure change proportional to the square of sound speed.

On the other hand, if pressure equilibrium is assumed, one may get another sound speed same as that developed in
homogeneous two-phase flows, known as the Wood’s equation 42,

ρ̃ã2 = (
∑
k

αk

ρka2k
)−1. (3.6)

It is also called equilibrium sound speed (e.g. 17).
We shall derive the effective sound speed of the mixed cell, resulting from the partition of external quantities

(section 3.5.A.) and the subgrid interactions (section 3.5.B.). It turns out that the new effective sound speed just varies
between (3.5) and (3.6), depending upon the level of relaxation. Suppose the mixed cell of pressure p̃ is expanded or
compressed by a volume of χv . The partition of volume and subgrid interactions lead to the pressure, under isentropic
assumption,

p̃∗ =
∑
k

α∗
kp

∗
k = (αl +

δΩl

Ω
)[pl − ρla

2
l

Ωl
(χvl + δΩl)] + (αr − δΩl

Ω
)[pr − ρra

2
r

Ωr
(χvr − δΩl)]. (3.7)

The subgrid closure model is actually entropy-nondecreasing. Since the entropy change of individual phase is of
second order of smallness, to be shown in section 3.5.C., the terms of pressure dependence on the entropy have been
neglected. The pressure change is then, after some manipulations

δp̃ = p̃∗ − p̃ =
χv

Ω
[(
∑
k

αkρka
2
k)− β

(ρla
2
l − ρra

2
r)

2

ρla2l /αl + ρra2r/αr
], (3.8)

in which high order terms have been neglected. Using δp̃ = ρ̃ã2

Ω χv , one gets

ρ̃ã2 = (
∑
k

αkρka
2
k)− β

(ρla
2
l − ρra

2
r)

2

ρla2l /αl + ρra2r/αr
. (3.9)

The parameter β results from the finite decay of pressure difference in ( 3.29), for t = Δt,

β = 1− e
− 2Nc̄

ρlal+ρrar
Δt

. (3.10)
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The parameter β ∈ [0, 1], or N ∈ [0,+∞), characterizes the level of relaxation. For β = 0 or N = 0, the cell is frozen
without relaxtion, and (3.9) is just the frozen sound speed (3.5). For β = 1 or N = +∞, the cell is fully relaxed. The
effective sound speed (3.9) takes its minimum value; this minimum value is exactly the equilibrium sound speed ( 3.6).

3.4. Volume-tracking of subgrid-scale fluid particles

In VOF, the interface in a cell is not tracked explicitly, but reconstructed and approximated by a simple geometry.
The simple line (piecewise constant) interface calculation (SLIC) 22 assumes the geometry is a line parallel to one of
the grid lines. Currently most widely used method is based on the piecewise linear interface calculation (PLIC). A
historic review of the piecewise constant and linear reconstructions can be found in 28,29. In PLIC, the surface normal
vector, n, is required to construct the linear interface

n · r+ h = 0, (3.1)

where h is the line constant. The normal vector is inferred from the spatial distribution of φ. If φ is a smooth function,
the normal vector satisfies

n = ∇φ. (3.2)

A few numerical methods have been proposed for the calculation of the surface normal. Youngs 46 used the finite-
difference method to discretize the gradient in (3.2) directly. Puckett 26 approximated the surface normal vector from
the volume fraction in a 3× 3 block of cells using an iterative method. The efficiency of the iterative method was im-
proved by Pilliod using an algorithm, ELVIRA, which can reconstruct all linear interfaces exactly 25. Scardovelli and
Zaleski33 described these methods in concise formulas, and presented two least-square fit techniques. The reconstruc-
tion using a spline interface was attempted by López et al. 19. The volume fraction is advanced from the geometry of the
reconstructed interface, by multidimensional/unsplit schemes or one-dimensional/operator-split schemes. Continuous
efforts have been made to improve the advection algorithms 11,28,33,46.

It is quite well known that the VOF method will be accurate whenever the radius of curvature is large with respect
to the grid size. It will be less accurate for scales comparable, and may lose all details for scales smaller than one
grid spacing. Consider fluid structures with the characteristic length, d, say, the thickness of a thin filament, or the
diameter of a circular particle. If d reduces to the order of the grid size, Δx, the VOF method numerically splits or
merges them. It is called numerical surface tension by Rider and Kothe 28. Černe et al. 5 investigated the behavior of
the VOF method in simulating these small interface structures, and found that the error of the interface reconstruction
increases rapidly when d/Δx ≤ 3. This is in agreement with the fact that a minimum of three grid cells are required
to resolve a circular particle with certain accuracy. They also found that the advection errors occur as well. The small
particle moves faster for d/Δx < 2. Subgrid particles (d/Δx < 1) were not considered in their study.

For resolving subgrid particles, there are two difficulties behind the PLIC-VOF method. Consider an isolated
subgrid particle in a cell, as illustrated in Fig. 3.3a. The subgrid particle generally stays in the cell, surrounded by
the dark phase in neighboring cells. The first difficulty is that the gradient of volume fraction ( 3.2) cannot provide a
meaningful solution. How to update the volume fraction is another difficulty. The simulation on the finer grid can
resolve this problem; however it increases the computational cost. In order to enhance the accuracy of VOF at low grid
resolution, more information on the interface in addition to the volume fraction is necessary. López et al. attempted
to resolve thin filaments by using makers 18. Zhang & Liu represented particles explicitly as piecewise polygons,
and calculated new material areas inside interface cells via polygon-clippings in a discrete manner 47. Dyadechko &
Shashkov proposed the moment-of-fluid method that keeps track of the cell-wise material centroids, in addition to the
volumes8. All these methods improve the accuracy in resolving interfaces with large curvatures or fine structures.
However, none of these methods have shown the capability to track and advect a subgrid-scale particle, and the
implementation of them in an existing PLIC-VOF code is not straightforward.

This work tries to improve the accuracy of the PLIC-VOF method at low grid resolution, and to expand its ca-
pability in dealing with subgrid particles 36. The idea is to treat the surface normal vector as independent variables
that are integrated along with the advection algorithm, instead of calculating them from ( 3.2). The equations for the
surface normal vector imposed with the unit normal constraint (|n| = 1) were tested by Raessi et al 27, and accurate
surface curvatures for resolvable circular interfaces have been obtained. In this work, the treatment for surface normals
has been developed for resolving subgrid particles. Non-conservative equations for surface normals are proposed and
generally tested in this work, and also the unit normal constraint is not imposed.

3.4.A. The surface normal and the motion of a small particle

We shall consider the mathematical relationship between the surface normal and the motion of a particle in this section.
Let domain D occupied by a resolvable or a subgrid particle be a simply connected domain bounded by the surface
Γ : φ = c. For the scalar field φ that is smooth enough to define n = ∇φ, we have, using the Stokes’ theorem,∫

D

ndA = 0. (3.3)
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a. b.

Figure 3.3. The difficulty in advecting a subgrid particle by the volume-tracking method alone. The PLIC-VOF method may reconstruct
a subgrid particle, given the phase volume and the normal vector. However, the normal vector cannot be properly calculated from (3.2)
only from the distribution of volume fraction for the isolated particle. Even if a vector is assigned as shown in (a) by certain rule based on
the volume fraction alone, the particle will be trapped in the cell. Consider a moving particle as shown in (b). Although the particle has
traveled a short distance within the cell, the PLIC-VOF method will reconstruct the same linear segment in the cell because the volume
fraction and thus its distribution are unchanged.

In order to characterize the size of a deformable particle, we introduce length scale, d, such that the surface of the
particle can be bounded by a circle with the minimum diameter d. Let the normal vector at the centroid of the particle
be nc, we have

Theorem 1: The surface normal at the centroid of a particle is of zero magnitude within the error of O(d 2),

nc = 0+ O(d2).

Proof: Approximating n by the Taylor series expansion at the centroid gives
∫
D

ndA =

∫
D

[nc + (∇n) · (r− rc) +O(d2)]dA = 0, (3.4)

whereO(d2) represents omitted second and higher order terms. Using the definition for the centroid,
∫
D
(∇n) · (r− rc)dA =

0, gives ∫
D

[nc +O(d2)]dA = 0.

This completes the proof.
This theorem implies that whatever the initial shape of a particle is, if it is shrunk to be very small (d → 0), the

surface normal vector at its mass center will be reduced to the zero vector as well. If velocity u is that of fluid particles,
we have

Theorem 2: The zero surface normal moves at the particle velocity of u.
Proof: Consider a circular fluid particle with its centroid moving at the speed of u. Since the zero surface normal

is located at the centroid within the error of O(d2), the zero vector moves at a speed of u+O(d2) , and then the speed
converges to u for the infinitely small particle (d → 0).

A surface normal other than the zero vector generally does not move at the speed of u. In addition to the transla-
tional motion, the surface normal vector undergoes rotation, compression or expansion, which actually represents the
deformation of surfaces. This theorem can be seen from the surface normal equations as well. In the neighborhood of
the zero vector, for l → 0 and m → 0, the SN equation equations become, by omitting terms with l and m,

lt +ulx + vly = 0,
mt +umx + vmy = 0,

(3.5)

which show that both surface normals move at the speed of (u, v). It is emphasized that the conservative equations,
however, lead to

lt +ulx + vmx = 0,
mt +uly + vmy = 0.

(3.6)

In short, for a small particle of O(Δx), the centroid of the particle moves at the same velocity as the surface
normal vector of zero magnitude, to second-order accuracy. The zero vector is a ’marker’, not tracked but evolved by
the partial differential equations.
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In the work of Raessi et al. 27, the normal vector is imposed with the unit normal constraint. Although the nor-
malization of a surface normal vector does not change the orientation and the curvature of an interface, it destroys
the solution in the neighborhood of the vector of zero magnitude and creates one or more discontinuities there. For
example, the unit vectors point to arbitrary directions at the center of a circle, where two surface normal components
are discontinuous. More importantly, a continuous normal vector is required to maintain a small particle moving at
the right flow velocity. Relation (3.4) is valid only for a smooth function of n. The information on the vector of zero
magnitude will be destroyed by the unit normal constraint. In this work, two surface normal components are solved as
they are during the course of integrating the equations.

Coupling the VOF method with the surface normal equations, the present volume tracking method is divided to
three procedures,

(a) to reconstruct the piecewise linear interface with a given surface normal in each interface cell such that the
interface truncates the cell with a fractional volume equaling the given phase volume in the cell (section 3.4.B.);

(b) to advance the phase volumes using a unsplit algorithm ∗ with a limiter ensuring that all phase volumes lie
within bounds of [0,Ω] (section 3.4.C.), where Ω is the cell volume;

(c) to advance the surface normal vectors (section 4.3).

Procedures (a) and (b) are nothing but a typical PLIC-VOF method except replacing the calculation of surface normal
by the surface normal vector obtained from (c). The surface normal vector is integrated by the finite volume method, to
be discussed in section 3.4.D.. Since the method combines the PLIC method with the surface normal (SN) equations,
we shall refer to the present method as PLIC/SN in what follows.

The discretization procedures to be discussed are so optimized and formulated that they can be readily implemented
on any grid system and coupled with a finite-volume flow solver. The only input required from the flow solver is the
velocity field. All formulas and discussion are valid for structured and unstructured grids, except for the interface
reconstruction procedure that is valid only for rectangular cells. The whole algorithm has been developed on a solution-
adaptive unstructured quadrilateral grid 38, and coupled with a compressible flow solver. Only the results on the
Cartesian grid with specified velocity fields are reported in this paper for the purpose of comparison and evaluation.

3.4.B. Representation of resolvable and subgrid particles

The present method to resolve different sized particles is illustrated in Fig.3.4, which contains a circular particle with
diameter d varied from 1/2Δx to 4Δx. The interface representation is the same as what has been developed in the
PLIC-VOF methods. The only difference is that the surface normal vector has been defined and updated by solving
the equations, so that surface normal calculations are not necessary. With the surface normal vector defined in the cell,
any sized particles can be unambiguously defined.

An interface is discretized by linear segments in the cells that intersect with the interface. Each linear segment,
starting from and ending at the cell edges, divides the interface cell to two portions having the exact volume of two
phases. Two linear segments defined in neighboring cells are in general not connected as shown in Fig. 3.4d, so that the
segments themselves are not sufficient to shape a closed interface for a particle. The dark particle is actually bounded
by the segments inside the cells together with the wet portion of edges between cells. The center of the subgrid circle
shown in Fig.3.4a is located at the grid node, so that the subgrid circle is represented as a symmetric diamond. In
general, a subgrid particle is represented by disconnected segments, and its shape changes with the location of its
center (see more examples in section 5, Fig. 3.6).

Given the surface normal vector n and the phase volume, the piecewise linear interface ( 3.1) is unique in a cell. In
general, the line constant h needs to be found by iterative method, because the truncation volume is often a nonlinear
function of h 28, especially for axisymmetric and 3-D geometries. For 2-D rectangular cells, the non-iterative method
is followed to find h 32.

In short, in order to represent subgrid as well as large particles for any grid system in a simple way, what we follow
is no more than

1. at most one linear material interface is located in a control volume;

2. the material interface inside the volume and the material interfaces aligned along volume faces may form a
subgrid particle, as shown in Fig.1a.

For rule (2), no special treatment is really needed for a PLIC algorithm. The material interface aligned along grid
lines appears as a natural result of PLIC. It is listed here because this sort of subgrid particles, which are unable to be
properly handled in a traditional PLIC/VOF method, might have been merged or deleted.

∗The dimension splitting algorithm necessitates the splitting of the equations for the normal vector as well. The computational cost is nearly
doubled for unstructured grids. Therefore, in this work, only the unsplit version is investigated.
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a. b.

c. d.

Figure 3.4. Representation of different sized circular particles: a) d/Δx = 1/2; b) d/Δx = 1; c) d/Δx = 2; d/Δx = 4.

No additional restrictions such as the size of a particle, the distance between particles are imposed in the present
interface representation. The topological changes of a particle are implicitly handled as most VOF methods. If a
particle is divided into two portions with a distance between greater than one grid spacing, it is regarded as the particle
breakup, or if the sides of two particles meet in the same cell, they are merged automatically. For resolving two
immiscible particles, the distance between them should be large enough to avoid numerical coalescence.

3.4.C. Advection of phase volumes

The advection equation is solved by the finite volume method. The volume flux is evaluated in the direction normal to
the grid line, and integrated in a unsplit manner. Given a flow field u, the advection equation is rewritten as

φt +∇ · (uφ) = φ∇ · u, (3.7)

and
φt +∇ · (uφ) = 0, (3.8)

for incompressible velocity field. Equation (3.8) is discretized as,

Ωn+1
k = Ωn

k −
∑
j

(unφkΔt)j , (3.9)

where un is the outward normal velocity across grid interface j, and φk is the volume fraction of phase k defined at
the grid interface, satisfying

∑
k φk = 1. Ωk is the volume of phase k, Ωk = φkΩ, satisfying

Ω =
∑
k

Ωk. (3.10)

In order to avoid volume Ωn+1
s going beyond the bound, a simple limiter is imposed on the outflow volume flux

with un > 0,
φ∗
s = Φφs. (3.11)

It is readily seen that Ωn+1
s is always non-negative with the limiter function. If the volume change is belowΩ/2, which

is true for the CFL number below 1/2, the slave volume starting from Ωn
s ≤ Ω/2 satisfies Ωn+1

s ≤ Ω. The limiter
function guarantees the exclusion of the overshoot and undershoot for both phases from numerical results.
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It is noted that the Φ limiter is different from the redistribution algorithm adopted in some VOF algorithms. The
redistribution algorithm is often triggered when an abnormal volume that is beyond [0,Ω] is found in the solution,
and then redistribute the volume to somehow empirically chosen cells nearby. The Φ limiter is to adjust the volume
flux such that the abnormal volume will not appear. This limiting method is simple and general for any grid system,
although it cannot replace the use of a more accurate procedure to calculate volume fluxes in the VOF advection
algorithm.

Once the interface has been constructed, as discussed in section 4.1, the volume flux (u nφsΔt)j at grid line j is
defined geometrically by calculating the volume or the area cut by the grid line shifted upstream by −u nΔt, where
un is the normal velocity defined in the upstream cell. When coupled with a compressible flow solver, the velocity
can be defined by the Riemann solver. In this work, since the exact velocity field is specified in all test cases, u n is
simply taken as the exact solution located at the center of the grid line. The method to evaluate volume fluxes is ’naive
unsplit’ 28. A modification is made following the DDR method 11. The DDR method is adopted because of its easy
implementation on our finite volume unstructured solver, and it does behave better than the naive unsplit version.

The minimum particle that can be resolved is restricted by the machine accuracy in evaluating volumes and volume
fluxes, and in practice the small volumes satisfying

Ωs/Ω ≤ 4× 10−11 (3.12)

for double precision floating-point computations are removed, and filled with the other phase.

3.4.D. Discretization of surface normal equations

Both conservative form and non-conservative form of the SN equations have been implemented and investigated. For
the sake of clarity, they are rewritten as

nt + (F1)x + (F2)y = S, (3.13)

where for the conservative form

F1 =

(
ul+ vm

0

)
F2 =

(
0

ul + vm

)
S =

(
0
0

)
(3.14)

and for the non-conservative form

F1 =

(
ul
um

)
F2 =

(
vl
vm

)
S =

(−mvx + lvy
mux − luy

)
. (3.15)

System (3.13) is discretized by the finite volume method. Consider a control volume Ω i bounded by discrete faces
with outward surface normal s = (sx, sy).

(ni)t = Si − 1

Ωi

∑
j

F̂j ,

where the numerical flux F̂j is approximated by the upwind scheme, depending on the direction of normal velocity
un = u · s,

F̂j =

{
F−

1 sx + F−
2 sy, if un > 0;

F+
1 sx + F+

2 sy, otherwise.
(3.16)

Velocity and surface normal at faces are required to define the numerical fluxes.

3.4.D.1. First-order scheme

For the first-order scheme in space, velocity and surface normal used to determine the numerical flux are simply those
located in the control volume on the upwind side. The source terms are discretized using the central difference scheme.

3.4.D.2. Second-order scheme

For achieving second-order accuracy in space, the surface normal and velocity at grid interfaces are located at the
center of face, rcj . They are interpolated from the center of the volume, following the MUSCL method,

M−,+ = M−,+
i + (∇M)−,+

i · (rc − r−,+
i ),

where M represents both the velocity and surface normal required to define the numerical flux. Superscripts −,+

indicates the values are defined from left and right sides (or upstream and downstream) respectively. For example,
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M−,+
i are those values located at r−,+

i respectively. (rcj−r−,+
i ) is the distance between the center of the grid interface

and the location of values defined. The method is general for both cell-centered and cell-vertex data structures.
In solving the hyperbolic conservation laws, the limiter is often used to suppress possible numerical oscillations

around discontinuities. To investigate the influence of the limiter on the solution of surface normal equations, the
MINMOD slope limiter for limiting the gradient (∇M)−,+

i is also implemented. The source terms are discretized
using the central difference scheme.

For achieving second-order accuracy in time, the two-step Runge-Kutta method is followed for the surface normal
equations. However, the interface reconstruction and the volume flux evaluation, described in sections 4.1 and 4.2, are
done only once based on the surface normal at the last time step.

3.4.D.3. Initial and boundary conditions

For solving the IBV problems of surface normal equations, appropriate initial and boundary conditions must be spec-
ified for l and m. For a given interface, only the direction of surface normal vector is available nearby. Others have
to be defined. An intuitive way to define these values is to construct a smooth surface function φ, such that φ = c
represents the interface. Two types of particles, circle and square, are tested in this paper, and their definitions are
summarized as below. For a circle centered at (x0, y0), we set

φ(x, y) =
1

2
[(x− x0)

2 + (y − y0)
2],

and then differentiate it,
l(x, y) = x− x0,

m(x, y) = y − y0,
(3.17)

which are the initial conditions for a circle. Similarly consider a square centered at (x 0, y0) with sides parallel to grid
lines, represented by

φ(x, y) =
1

2

⎧⎨
⎩

(y − y0)
2 |y − y0| > |x− x0|;

(x − x0)
2 |y − y0| < |x− x0|;

1
2 [(x− x0)

2 + (y − y0)
2] |y − y0| = |x− x0|,

one gets two surface normals for squares,

l(x, y) =

⎧⎨
⎩

0 |y − y0| > |x− x0|
x− x0 |y − y0| < |x− x0|

1
2 (x− x0) |y − y0| = |x− x0|,

(3.18)

and

m(x, y) =

⎧⎨
⎩

y − y0 |y − y0| > |x− x0|
0 |y − y0| < |x− x0|

1
2 (y − y0) |y − y0| = |x− x0|.

(3.19)

Notice that the definitions are independent of the size of the circle or square, and it suggests the surface normals for
any sized particles are solved equally.

Physical boundary conditions for surface normal vector of a real material interface attached on a wall depend on
many factors, especially surface tension and gravity, which is beyond the scope of this paper. We shall focus on the
interfaces inside the domain. In practice, for wall, inlet and outlet boundaries, we set

∂l

∂s
=

∂m

∂s
= 0, (3.20)

in the direction normal to the boundary.

3.4.E. The advection of a subgrid particle

It has been shown that the zero normal vector moves at fluid velocity in section 3. We will investigate how a subgrid
particle can follow the zero vector using the PLIC/SN method.

Consider a 1-D subgrid particle as shown in Fig. 3.5. Without losing generality, it is assumed that the surface
normal points from the bright to the dark phase. Suppose the particle is initially located at face A, x = x 0. We use a
linear function

l(x) = x− x0

with zero exactly located at x = x0 as the initial condition for surface normal vector. The averaged surface normal over
the cell bounded by faces A and B is then positive, as indicated by the dashed line in the top-right figure. Given the
volume of the bright particle and the positive surface normal, the interface is then reconstructed on the left following
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u > 0

Constructed subgrid particle Surface normal vector

A B
l
A B

a)

l

b)

l

c)

l

d)

Figure 3.5. A schematic of a 1-D subgrid particle motion controlled by the surface normal vector. The arrow always points from the bright
phase to the dark phase in the left column, and its direction is determined by the sign of the averaged surface normal over the cell, the value
of which is shown by the dashed line in the right.

the PLIC, as shown in Fig. 3.5a. Notice that the commonly used surface normal calculation for this small subgrid
particle is senseless.

Now consider the motion of the particle. Suppose the flow moves at a constant speed to right, traveling through
one cell in three steps. The evolution of the surface normal is shown in the right column. It starts with a positive value,
and gradually reduces to be negative after the zero vector moves across the central point of the cell. After three steps,
the zero vector has traveled from face A to face B, at the same speed as the flow. The corresponding reconstructed
interface is shown in the left column. In the first step, from Fig. 3.5a to b, since the subgrid particle is attached on
the face A, there is no volume flux through face B, thus the volume of the particle is unchanged. At this moment, the
surface normal is still positive, so that the reconstructed interface is the same. Once the surface normal changes its
sign, as seen from Fig. 3.5b to c, the particle is reconstructed on the right. The particle leaps from one side to the
other side of the cell. In the third step, the particle is moved to the right neighboring cell by the advection algorithm,
returning to the initial state but shifted by one grid cell. The procedure above will be repeated.

It is clear that the motion of a subgrid particle is made possible by both the leap controlled by the PLIC/SN and
the volume advection through faces. The motion of a subgrid particle in two dimensions is more interesting and
complicated. Fig. 3.6 shows all sequential steps of a particle of d/Δx = 0.4 moving at velocity (u, v) = (1.0, 0.5).
For this illustration, the CFL number is taken as 1/8 based only on x-velocity, so that the particle is supposed to move
from one node to the other in 16 steps, traveling two grid cells in x-direction, and one cell in y-direction. In most
steps, the particle appears as a combination of small pieces in 2-4 cells. Although these small pieces are reconstructed
separately by PLIC algorithm in each cell, they are always connected without splitting. It is emphasized that the
translation is realized simply by a typical PLIC algorithm with the surface normal defined in the cell. No additional
treatment is necessary.

Using the PLIC/SN method, for 1-D geometry the subgrid particle actually stays on the upstream side of the cell
before the normal vector is reversed, which happens exactly after the arrival of the zero vector. The leap motion in the
cell and the volume advection through faces are not coupled. It is different for a general 2-D geometry. Although the
sign of l is reversed between Fig. 3.6d and f, the orientation and location of the reconstructed interface are evolved
gradually as shown from Fig. 3.6b to f. The volume flux through the right face is not zero in Fig. 3.6e, so that a small
portion is advected to the right cell as seen in Fig. 3.6f. The same is seen in y direction from Fig. 3.6h to j when the
sign of m is reversed. As a result of this coupling between the reconstruction and the volume advection, the subgrid
particle is located in favor of the downstream sides, which is clearly seen in Figs. 3.6p and q. As interpreted by Černe
et al. 5, using a typical PLIC-VOF method, the location error will be accumulated, resulting in the particle moving
faster.
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Figure 3.6. Translation of a 2-D subgrid particle of d/Δx = 0.4 in the velocity field (u = 1, v = 0.5), all sequential steps. The particle is
supposed to move from one node to the other node in 16 steps, traveling two grid cells in x-direction, and one cell in y-direction.
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By analyzing numerical results, the location error of a subgrid particle can be estimated as,

εmax = ±Δx/2 + d+O(Δx2), (3.21)

where three errors are originated from the interface reconstruction, the advection and the surface normal equations
respectively. The first is the leap error. The location of a particle within the cell is solely determined by the PLIC
together with the normal vector. The subgrid particle is reconstructed either on the left or the right side depending
upon the location of zero vector. If the zero vector represents the exact location of the particle, the location error
originated from this reconstruction procedure is no more than Δx/2, which is the first term. The error originated from
the advection algorithm will depend on the algorithm used and the location of interface, so d is taken as the simple
estimate of the maximum error, if it is smaller than the grid spacing. The numerical error in integrating the surface
normal equations is assumed to be second order accurate. The deviation of the exact center of the particle from the
zero vector is O(d2) as discussed in section 3.4.A., which is smaller than O(Δx2) for a subgrid particle. The last term
O(Δx2) represents these two errors. All numerical results above show that the location errors in two dimensions are
within the bound (3.21).

It is noted that a more precise location of the subgrid particle can be reconstructed in the cell, by taking into
account the location of the zero vector that can be obtained from the distribution of the normal vector. However, this
necessitates non-trivial modifications in PLIC and advection algorithms.

3.5. Thermodynamic and dynamic subgrid closure model for two-phase cells

Consider a control volume or a cell consisting of two phases. Individual quantities in the cell, such as velocity,
density and pressure, are initially specified or updated in the last step; they are in either equilibrium or disequilibrium
of velocity and pressure. The entire cell undergoes the total change of momentum, energy and volume in a finite time
Δt after interacting with other cells. We suppose that the total change has been calculated by any Lagrange scheme
that treats the entire cell as a whole. At the same time, momentum, energy and volume in the cell are transferred from
one phase to the other if they are in disequilibrium. The present subgrid closure model for these physical processes
contains three components 37:

1. to distribute the total change of momentum, volume and energy to two phases (section 3.5.A.),

2. to find a partially or fully relaxed state of pressure and velocity, such that the cell may eventually approach
pressure and velocity equilibrium between two phases (section 3.5.B.),

3. to construct an effective state of the mixed cell that is used to advance the Lagrange step (section 3.3.A.).

The closure model faithfully follows the conservation of volume, mass, momentum and energy, and it satisfies the
entropy inequality (section 3.5.C.).

In the closure model, the interface in a mixed cell can be one or more boundaries that separate two phases. It is
a straight line in the VOF method with linear interface reconstruction, while it represents closed lines or surfaces if
there are numerous bubbles or drops in the cell. The boundaries between phases are not surfaces in a strict mathematic
sense, but are very thin regions, in which the properties change with great abruptness from the properties of one phase
to those of the other. We make the fundamental assumption that the fluids are not intermingled, or the grid scale
is sufficiently larger than the diffused zone between two fluids. We assume the effect of surface geometry issues,
such as area, shape, and number density, on total thermodynamic properties in the equilibrium state is so small that
it can be neglected, which is true in most applications. If, however, we consider surface tension and absorption, the
geometry issues may become of great importance in determining the thermodynamic properties. Some modifications
are required for the closure model proposed, which is beyond the scope of this paper.

Concerning material properties, we assume each phase has individual state quantities satisfying its own EOS, and
the quantities of pressure, temperature and sound speed of each phase vary continuously with volume and internal
energy. Also each phase has a positive heat capacity at constant volume. For physical systems for which the heat
capacity is negative, the closure model should be reexamined. No mass exchange or phase change is considered in
this paper, and therefore the phase mass remains constant. A vacuum or a void is a solution of the compressible Euler
equations; it is preferably treated as the third phase numerically. In the present work dealing with two phases, the void
is implicitly filled by the neighborhood gas phase, as commonly done in the simulation of compressible gas flows.
This approximation is reasonable for gas/gas and gas/liquid materials. The void that possibly appears in a solid phase
is not handled in this paper.

3.5.A. Partition of external conservative quantities

The interaction of a Lagrangian cell with its neighboring cells results in the total change of energy, volume, and
momentum, denoted by χE , χv, χm respectively. We suppose these quantities have been updated by a stable Lagrange
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scheme, and shall apportion them between two phases in the mixed cell. For brevity, only the changes of left phase
are to be defined. Those of right phase are given by the conservation, χ r = χ − χl, for all quantities. Here, the left
and the right phase are labeled only for the use of the Riemann solver; they are labeled arbitrarily elsewhere.

3.5.A.1. Partition of momentum

We assume that two phases undergo the same acceleration. This equal acceleration rate assumption gives the velocity
change, same for two phases,

δu =
χm

M
, (3.1)

where M =
∑

k Mk is the total mass of the cell. The momentum partitioned for the left phase is therefore

χml =
Ml

M
χm. (3.2)

The partition of momentum results in a change in kinetic energy,

χem =
∑
k

[
1

2
Mk(uk + δu)2 − 1

2
Mku

2
k] =

∑
k

[Mkukδu+
1

2
Mk(δu)

2], (3.3)

which should be subtracted from the total energy change χE . It is noted that the change of kinetic energy (3.3) cannot
be simply assigned to each phase, because it may violate entropy inequality and numerically produce negative internal
energy. The present partition of momentum only updates the momentum and velocity, and leaves the change of kinetic
energy to be treated together with the total energy in section 3.5.A.3..

3.5.A.2. Partition of volume

We follow the classic assumption of equal volumetric strain,

χvl = αlχv. (3.4)

It maintains the positivity of volume if χv > −Ω, where Ω is the total volume of the cell, or Δx in one dimension.
Two materials undergo either expansion or compression process after volume partition. It is preferably for the

process to be isentropic, in order to reduce numerical heat fluxes between two phases. Thus, the work done by the
pressure force,

dwk = pisenk dvk (3.5)

should be subtracted from phase energy, where p isen
k denotes the pressure in the isentropic process. In this paper, a

relation that contains variables with subscript k, such as (3.5),(3.6),(3.7) and (3.8), represents two relations, one for
k = l and the other for k = r, unless the subscript k appears in the sigma summation notation. The pressure in an
isentropic process generally depends on volume, so that the work cannot be simply evaluated for general materials
from (3.5), although the exact solution is available for the ideal gases. Some iterative procedures are needed. We
consider a general method to approximate the work for general EOSs without recourse to iterations. The difficulty
here is how to maintain the positivity of internal energy. A discussion on the positivity of internal energy as one of the
constraints in optimization based closure model may be found in 3. Suppose two phase pressures, pk, become p∗k after
equal volumetric strain, using the isentropic relation

p∗k = pk + a2kdρk = pk + a2k[Mk/(Ωk + χvk)−Mk/Ωk], (3.6)

where ak is the speed of sound of phase k, and Ωk is the volume of phase k. If two initial pressures and two end
pressures are all positive or all negative, the pressure work is approximated by that of the smaller absolute value,

χwk =

{ −min(pkχvk, p
∗
kχvk) pkχvk ≥ 0

−max(pkχvk, p
∗
kχvk) pkχvk < 0

. (3.7)

If four pressures have different signs, the work is set to be,

χwk = 0. (3.8)

Formulas (3.7) and (3.8) are used instead of using formula (3.5). Although it is difficult to find the exact p isen
k for a

general material, one may expect that it lies between the initial pressure pk and the end pressure p∗k. The formulas
(3.7) and (3.8) assure that the absolute work is not greater than that done in the isentropic process. There is only a
second-order difference. That is to say, if an isentropic expansion/compression results in a positive internal energy
after the pressure work is subtracted, formulas (3.7) and (3.8) guarantee the positivity of internal energy as well.
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3.5.A.3. Partition of energy

The total energy consists of internal energy and kinetic energy. Since the kinetic energy has been determined by the
updated velocities, the change of the internal energy is,

χe = χE − χem. (3.9)

Also, the work done in volume compression/expansion should be subtracted from the total internal energy. The energy
that remains to be partitioned becomes

χ∗
e = χe −

∑
χwk. (3.10)

Suppose the left phase gets a portion of energy χ∗
e , for α ∈ [0, 1],

χel = αχ∗
e. (3.11)

We determine such a parameter α that the resulting two phases reach the state of maximum entropy. The entropy
change due to the addition of internal energy under constant volume is

S(α) =

∫ αχ∗
e

0

1

Tl
del +

∫ (1−α)χ∗
e

0

1

Tr
der. (3.12)

Using de = CvdT , one gets

S(α) =

∫ Tl+αχ∗
e/Cvl

Tl

Cvl

T
dT +

∫ Tr+(1−α)χ∗
e/Cvr

Tr

Cvr

T
dT. (3.13)

where Cv = (∂e/∂T )v is the heat capacity at constant volume. After a few manipulations, one gets the solution of
S′(α) = 0,

α =
Cvl

Cvl + Cvr
[1 +

Cvr(Tr − Tl)

χ∗
e

]. (3.14)

It is easy to show S ′′(α) < 0 for any positive heat capacity, so that the solution corresponds to the state of maximum
entropy. The solution is subject to the constraint, α ∈ [0, 1], numerically expressed as

α = max(0,min(α, 1)). (3.15)

Without this constraint, the state of thermal equilibrium is reached by implicitly introducing some amount of heat flux
between two phases.

3.5.B. Modeling of subgrid wave interactions

If two phases in the mixed cell are in disequilibrium, they will interact with each other and evolve obeying the conser-
vation laws. Since there is no net change of total conservative quantities, the mixed cell can be regarded as an isolated
system. In this isolated system, two phases will eventually reach pressure and velocity equilibrium; the subgrid wave
interactions in the mixed cell are indeed a relaxation process. The thermal equilibrium is generally not achieved if the
physical heat transfer is not considered.

In the present model, the subgrid wave interactions are supposed to obey the time-dependent conservation laws.
This set of equations is imposed with the periodic boundary condition so that the net change is zero. We try to find an
approximate but analytical solution of the set of equations that meet two conditions: (1) reaching pressure and velocity
equilibrium for time approaches infinity, and (2) satisfying the entropy inequality.

t

x
rl

t

x

l rr

r

p+, u+p-, u-

(a) (b)

Figure 3.7. Interface configuration inside the interface cell

Suppose there are N uniformly distributed phase pairs in the mixed cell, as shown in Fig. 3.7a, and every phase pair
consists of two phases with the same intensive quantities (density, pressure, velocity, temperature, volume fraction)
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as those defined in the cell. Since the periodic boundary condition is imposed on the phase pair, the problem remains
the same for any N . If there are many interfaces in the cell, the parameter N represents approximately the number of
interfaces, bubbles, or drops inside. For an interface that separates two pure materials in space, it may make no sense
to think of the number of phase pairs. Here, we give a quick estimate of N for a cell associated with only one interface.
Consider one phase pair (N = 1) in all cells. There are one interface inside and the other interface just at the grid face
between two neighboring cells. The interface that separates two pure materials in space should be relaxed at a lower
decay rate than the flow configuration of N = 1. It will be shown in what follows that the relaxation rate of both
velocity and pressure is proportional to the parameter N . We may set a smaller N , say N = 0.5, for one interface,
considering that there are actually two interfaces associated with a cell for N = 1. In general flow situations, it is
expected that N ≤ 1 for one interface in a cell. In multi-dimensions, it might be also possible to model the effect of the
geometric properties, such as the length of the interface inside, on the relaxation rate using a real N , not necessarily
an integer.

Consider the left phase in a phase pair, as shown in Fig.3.7b, its solution is governed by both pressure and velocity
at left and right boundaries, (p−, u−), (p+, u+) respectively. The conservation laws yield, at the discrete level for the
left phase,

(Ml)t = 0, (3.16)

(Ωl)t = −N(u− − u+), (3.17)

(Mlul)t = N(p− − p+), (3.18)

(MlEl)t = N(p−u− − p+u+), (3.19)

where Ml is the mass satisfying Ml = ρlαlΩ = ρlΩl. The equations for the right phase can be similarly written. Both
velocity and pressure at faces are approximated by the acoustic Riemann solver,

u+ = ū+ (pl − pr)/(ρlal + ρrar), (3.20)

p+ = p̄+ s̄(ul − ur), (3.21)

where ū = (ρlalul+ρrarur)/(ρlal+ρrar), p̄ = (ρlalpr+ρrarpl)/(ρlal+ρrar), and s̄ = (ρlalρrar)/(ρlal+ρrar).
Velocity (u+) in (3.20) and pressure (p+) in (3.21) are exactly the star state of the acoustic Riemann problem with
(pl, ul, al) on the left and (pr, ur, ar) on the right. Similarly, velocity (u−) and pressure (p−) are given by

u− = ū− (pl − pr)/(ρlal + ρrar), (3.22)

p− = p̄− s̄(ul − ur). (3.23)

This Riemann solver is valid before the sound wave reaches the other side of the phase volume; the system of
equations should be integrated under the CFL condition if solved explicitly. It is prohibitive for very small phases
using an explicit method. In order to overcome this stiffness, some implicit ingredient is necessary. We attempt to
integrate the equations analytically. The solution of the left phase states is sufficient due to the conservation. It turns
out that the momentum exchange between two phases can be obtained from the ordinary differential equation (ODE)
of the velocity difference,

uD = ul − ur,

to be discussed in section 3.5.B.1.. Also, the volume exchange under the isentropic assumption can be solved from the
ODE of the pressure difference

pD = pl − pr,

to be shown in section 3.5.B.2.. Special attention is paid to maintaining the positivity of phase volumes. The energy
equation (3.19) is solved based on two solutions obtained, and treated at last in section 3.5.B.3.. The maximum entropy
state in the possible solutions is pursued to remove the freedom in determining the energy flux.

3.5.B.1. Momentum exchange

Consider the momentum equation for left phase (3.18) in this section. Since no mass transfer between two fluids is
considered, Ml remains constant, as seen from (3.16). The momentum equation is rewritten as (u l)t =

N
Ml

(p− − p+).

Similarly for the right fluid one gets (ur)t = − N
Mr

(p− − p+). Subtracting the two velocities leads to

uD
t =

N

M̄
(p− − p+),
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where M̄ = (MlMr)/(Ml +Mr). Using the acoustic Riemann solver for two pressures, (p− − p+) = −2s̄(ul − ur),
gives

uD
t = −2Ns̄

M̄
uD.

This ordinary differential equation yields
uD = uD

0 e−
2Ns̄
M̄

t, (3.24)

where uD
0 denotes the initial velocity difference between two phases. The subscript 0 for initial values is often removed

for the sake of clarity. A constant Ns̄
M̄

is assumed here. It is clear that the velocity difference will experience exponential
decay with time. The resulting momentum change of the left fluid is,

δMlul
=

∫ t

0

N(p− − p+)dt = −2Ns̄

∫ t

0

uDdt. (3.25)

Substituting (3.24) into (3.25) leads to the momentum change for left fluid,

δMlul
= uD

0 M̄(e−
2Ns̄
M̄

t − 1). (3.26)

It can be readily seen that for time approaches infinity, the change of the momentum is finite, and the solution
approaches the velocity equilibrium. It is therefore valid not only in the early stage of interactions, but also provides a
robust long-time solution.

It is noted that after one time step (t = Δt), the constant s̄ introduces two errors of the same order, O(uDΔt2).
One error is introduced in (3.24), resulting from the integration of the ODE using the constant s̄. The other error is
introduced when the constant s̄ is moved outside of the integral in the rightmost term in ( 3.25). In the order analysis,
we assume that the difference between two phase quantities in the mixed cell is of O(Δx), and also the difference
between the initial and the end state of the same phase is of O(Δt). For the sake of clarity, the spatial and the temporal
error will not be distinguished hereafter, so that the error introduced by assuming the constant s̄ is of the third order of
smallness, O(δ3), where δ denotes either Δt or Δx.

3.5.B.2. Volume exchange

The volume equation (3.17) will be integrated in this section. Consider the isentropic procedure,

dpl
dΩl

= −Mla
2
l

Ω2
l

,
dpr
dΩr

= −Mra
2
r

Ω2
r

.

The pressure difference satisfies,
dpD

dΩl
= −(

Mla
2
l

Ω2
l

+
Mra

2
r

Ω2
r

). (3.27)

Volume equation (3.17) becomes, using (3.27),

pDt = −Nc̄(u− − u+),

where c̄ = Mla
2
l

Ω2
l

+
Mra

2
r

Ω2
r

. Approximating the velocity difference by the acoustic solver, (u−−u+) = − 2
ρlal+ρrar

(pl−
pr), yields

pDt = − 2Nc̄

ρlal + ρrar
pD.

Assuming the coefficient constant, one gets

pD = pD0 e
− 2Nc̄

ρlal+ρrar
t
, (3.28)

where pD0 is the initial pressure difference. It is seen that the pressure difference approaches zero for time approaches
infinity. The change of the pressure difference satisfies,

δpD = pD0 (e
− 2Nc̄

ρlal+ρrar
t − 1), (3.29)

which gives an immediate volume change, using (3.27),

δΩl
= −δpD

c̄
. (3.30)

However, (3.30) cannot avoid the appearance of negative volume if c̄ is constant. As seen from the definition of c̄, it
varies abruptly for either phase volume (i.e., either Ω l or Ωr) approaching zero. Therefore the constant c̄ is used only
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to update the pressure difference. In order to maintain the positivity of phase volume, we return to equation ( 3.27),
and integrate it over Ωl directly,

δpD =
Mla

2
l

Ωl
− Mra

2
r

Ω− Ωl
+A0. (3.31)

Notice that the change of the pressure difference δpD is given from (3.29) for any given t. The volume of the right

phase, Ωr in (3.27), has been replaced by Ω− Ωl. Constant A0 is determined from the initial state, A0 = −(
Mla

2
l

Ωl
−

Mra
2
r

Ωr
)0. After simple algebraic calculations, we get a quadratic equation for Ω l,

A1Ω
2
l − (Mla

2
l +Mra

2
r +ΩA1)Ωl +ΩMla

2
l = 0, (3.32)

where A1 = δpD −A0. The left volume is the root of (3.32),

Ωl =
(Mla

2
l +Mra

2
r +ΩA1)−

√
(Mla2l +Mra2r +ΩA1)2 − 4A1ΩMla2l

2A1
. (3.33)

This root is always real, and satisfies Ωl ∈ (0,Ω). The detailed proof is given in Appendix A. The volume change is
then

δΩl
= Ωl − (Ωl)0. (3.34)

It is stressed that to maintain the positivity of volume for general materials was a challenging task. This is one
reason why the equal strain rate assumption without pressure relaxation is often preferred (e.g. 4,10). We actually
provide an analytical positivity-preserving solution of the problem without recourse to iterations, for both partial and
full relaxations.

3.5.B.3. Energy exchange

Given momentum and volume changes, the energy change is evaluated by integrating ( 3.19),

δMlEl
=

∫ t

0

N(p−u− − p+u+)dt =

∫ t

0

(ūN(p−l − p+r ) + p̄N(u−
l − u+

r ))dt,

which can be simplified to

δMlEl
= û

∫ t

0

N(p−l − p+r )dt+ p̂

∫ t

0

N(u−
l − u+

r )dt, (3.35)

or
δMlEl

= ûδMlul
− p̂δΩl

, (3.36)

where û is the value of ū at t′ ∈ [0, t], and p̂ is that of p̄. Since both velocity and pressure are relaxed over time, it is
reasonable to expect that they vary within the bounds

û ∈ [ul, ur] (3.37)

and
p̂ ∈ [pl, pr]. (3.38)

In order to evaluate (3.36), simple choices, such as û = ū and p̂ = p̄, may violate the entropy inequality, and
numerically produce negative energy in some circumstances. We shall find a solution within the bounds ( 3.37) and
(3.38) such that energy change δMlEl

results in the state of maximum entropy in the cell. Consider ξ1, ξ2 ∈ [0, 1], û
and p̂ satisfying (3.37) and (3.38) are expressed as

û = ul + ξ1(ur − ul),

p̂ = pl + ξ2(pr − pl).

Substituting them into (3.36) gives
δMlEl

= ulδMlul
− plδΩl

+ χ, (3.39)

where
χ = ξ1(ur − ul)δMlul

− ξ2(pr − pl)δΩl
.

By using the solutions for δMlul
and δΩl

, from (3.26) and (3.30) respectively,

(ur − ul)δMlul
= (ur − ul)

2M̄(1− e−
2Ns̄
M̄

t) ≥ 0,
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−(pr − pl)δΩl
= (pr − pl)δpl−pr/c̄ = (pr − pl)

2
(1− e

− 2Nc̄
ρlal+ρrar

t
)/c̄ ≥ 0,

it is clear that
χ ∈ [0, χmax], χmax = (ur − ul)δMlul

− (pr − pl)δΩl
≥ 0. (3.40)

Now, two parameters, û and p̂, have been reduced to one parameter χ. We need to find χ such that the resulting
state in the cell attains the maximum entropy under the constraint χ ∈ [0, χmax]. The problem is similar to that
encountered in the partition of energy, discussed in section 3.5.A.3.. After a few algebraic manipulations, we get

χ =
(CvrTr +Br)Cvl − (CvlTl −Bl)Cvr

Cvl + Cvr
, (3.41)

subject to the constraint
χ = min(χmax,max(0, χ)),

where Bl = plδΩl
+

δ2Mlul

2Ml
and Br = plδΩl

− δ2Mlul

2Mr
+ (ur − ul)δMlul

. It is noted that the state of maximum entropy
adopted here does not lead to the temperature equilibrium in the mixed cells in general. For instance, an interface with
a temperature jump in pressure and velocity equilibrium will not be affected.

This completes all solutions required for the subgrid modeling.

3.5.C. Entropy inequality and numerical heat flux

Suppose the change of conservative quantities are updated by a stable Lagrange scheme that satisfies the entropy
inequality, for the effective state,

Tds = (χE − χem̃) + p̃χv ≥ 0,

where χem̃ is the change of kinetic energy evaluated from the effective velocity, which is in general different from
χem that is evaluated from phase velocities. Luckily, under the assumption of equal acceleration, it can be shown that
χem = χem̃, as readily seen from (3.3). This property should be regarded as an advantage of the equal acceleration
assumption in the partition of momentum. Thus, one gets,

Tds = χe + p̃χv ≥ 0.

This guarantees the existence of a reference state in the mixed cell that meets the entropy inequality, since the effective
sound speed is in consistent with the closure model. The principle of maximum entropy followed in the subgrid
closure model assures that the entropy of the final state is not lower than the reference state, and thus satisfies the
entropy inequality ∑

k

dsk ≥ 0.

It should be noted that the present closure model does not necessarily guarantee that each phase satisfies the entropy
inequality,

dsk ≥ 0.

Consider the mixed cell has undergone an isentropic process in the Lagrange step first. The total heat flux satisfies

q = χe + p̃χv = 0.

Some amount of numerical heat flux can be possibly introduced between two phases, when the state of maximum
entropy is pursued,

dsk =
qk
Tk

, (3.42)

where the heat flux qk is positive for one phase, and negative for the other, because of energy conservation q =∑
k qk = 0. The amount of the numerical heat flux is constrained by the energy partitioned,

εq ≤ |χ∗
e|+ |χmax|,

where εq = |ql| = |qr|, and χ∗
e is the energy defined in (3.10). The term χmax is of O(δ2) as seen from (3.40). It can

also be shown that χ∗
e is of O(δ2) (Appendix B). Thus, the numerical heat flux satisfies

εq ≤ O(δ2). (3.43)

That is to say, the numerical heat flux introduced between two phases in the present subgrid closure model is of
second-order of smallness. The entropy change of each phase is of the second order, but the total entropy, ds =
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(a) (b)
Figure 3.8. Unsteady shock wave (Ms=10) reflection over a 30◦ wedge: (a) 5-level solution-adaptive unstructured quadrilateral grid,
overlapped with isopycnics (b) isopycnics using an adaptive grid 2-level finer than (a).

|ql/Tl + qr/Tr| = εq|1/Tl − 1/Tr| ≤ O(δ3), is of third order. Thus, if the mixed cell undergoes an isentropic process
in the Lagrange step, the entropy change in the closure model satisfies

|O(δ3)| ≥
∑
k

dsk ≥ 0. (3.44)

If the mixed cell experiences an entropy increase in the Lagrange step, after the passage of a shock wave for
instance, one has q > 0. This non-zero heat is included in χ∗

e , and partitioned by formula (3.14). Since the maximum
entropy state is pursued, the low temperature will never be further decreased, so that one gets the inequality,

q

Tmin
+ |O(δ3)| ≥

∑
k

dsk > 0, (3.45)

where Tmin = min(Tl, Tr). The third order term |O(δ3)| results from the numerical heat in modeling subgrid isen-
tropic processes, as shown in (3.44).

3.6. Numerical examples

3.6.A. Lagrange-remap for single phase flows

A 2D test problem of the double Mach reflection of a strong shock (M s=10) over a 30◦ wedge, which was presented
in a review article 43, is investigated. This test case was also calculated with a staggered-mesh Lagrange-Remap
method 24. This calculation is performed using a solution-adaptive unstructured quadrilateral grid 38. The initial grid
has only 67 cells, and it is refined uniformly three levels. Figure 3.8a is a plot of the 5-level adaptive mesh together
with corresponding density contours. Figure 3.8b is the solution using two more levels of refinement, in which the
finest cell cells corresponds to a 1536 × 1024 uniform mesh in domain of 1.2 × 0.8. The shock wave and the shear
discontinuity are resolved as well as the best version of the staggered-mesh Lagrange-Remap 24. In the present result,
the flow behind reflected shock wave is free of high-frequency noises.

3.6.B. Lagrange-remap for two-phase flows

The modified Sod shock tube problem with x0 = 0.5, (γ, ρ, u, p)L = (2, 1, 0, 2) and (γ, ρ, u, p)R = (1.4, 0.125, 0, 0.1).
A comparative study of this problem using various pressure relaxation closure models for Lagrangian hydrodynamics
was performed by Kamm et al. 16.

The problem is calculated using different levels of relaxation by varying parameter N . Three levels of relaxation,
N = 0 (no relaxation), 0.5 and 5 (well relaxed), are tested. All results at the final time of t = 0.2 are shown in Fig.
3.9. The results for parameter N larger than five is almost the same as those of N = 5, hardly distinguishable on the
scale used in the figures. The results are in a good agreement with those of the sub-scale dynamics model reported
in16. It is of interest that the level of relaxation hardly affects the flow features away from the interface, such as the
left-traveling rarefaction waves and the right-traveling shock wave. A study of the computed result on finer meshes
shows an L1 convergence rate of approximately one.

The interface is always resolved sharply in one grid cell without creating any pressure oscillations. Both pressure
and velocity are in equilibrium even for the case of N = 0. The VOF Lagrange computation of Galera et al. 10

is based on the similar equal strain rate assumption, but they found that the phase quantities exhibit a large jump
not only in density but also in pressure in the mixed cell. It is stressed that the present closure model for N = 0
contains only the partition of external conservative quantities without any subgrid interaction modeling. A significant
improvement is clearly seen; the phase quantities in the mixed cell, such as density and pressure, are resoled similarly
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Figure 3.9. Results for the modified Sod shock tube problem at t = 0.2 for three levels of relaxation, N = 0 (no relaxation), N = 0.5 and
N = 5 (well relaxed) : (a) density; (b) pressure; (c) velocity; (d) specific internal energy; (e) temperature pressure; (f) time-history of two
pressures in the mixed cell together with the index of the mixed cell.

as well as those in single phase neighboring cells. The temperatures of both phases in the mixed cell are higher than
their corresponding exact ones; this fact implies both phases have experienced an entropy increase since the initial
breakdown of discontinuity. The temperature rise of the right phase is hardly seen in the scale used in Fig. 3.9e, but it
can be deduced from the rise of internal energy seen in Fig. 3.9d. This temperature increase is allowed in reality, due
to turbulent mixing in the early breakdown of a diaphragm for instance. This entropy condition can be verified from
density data as well for perfect gases. The numerical densities near the interface must be not higher than the exact
solution, as seen in Fig. 3.9a. All results reported by Kamm et al. show the same trend. However, a density increase
is seen in the mixed cell in the result of Galera et al. 10. It is therefore concluded that the present improvement is due
to the careful partition of energy (section 3.5.A.3.) that maintains the entropy inequality.

The question remains as to how pressure and velocity in the mixed cell equilibrate without subgrid relaxation. The
hint is seen from the history of two phase pressures in the mixed cells (Fig. 3.9f). The pressure data at every time step
are all plotted. The material interface is initially located between two cells with the index of 50 and 51, so the index of
the mixed cell starts from 51. The interface moves inside the cell for three steps, and then moves to the downstream
cell with the index of 52, and so on. For non-zero parameter N , two pressures get equilibrated quickly in two or three
steps. For N = 0, two pressures equilibrate more slowly. There are two mechanisms for the pressures to equilibrate
without relaxation. One is the high pressure decreases more rapidly than the low pressure increases, as seen in the first
three steps in the same mixed cell. Another mechanism is the motion of the interface from one cell to another. The
phase on the downstream side is repeatedly merged with the same phase in the downstream cell. The subgrid closure
model for N = 0 does work for such a problem associated with a single moving interface in pressure and velocity
equilibrium.
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3.7. Concluding remarks

The subgrid closure model proposed in this paper is general and robust for both equilibrium and non-equilibrium
two-material cells. It can be constructed as an independent module that provides the updated quantities for each phase
at t = Δt, after apportioning the change of entire cell quantities and modeling subgrid interactions. The updated
quantities include individual phase velocity, volume and energy; other quantities, such as density and pressure, are
then calculated from the conservation of mass and the EOSs. The entire cell quantities to be apportioned between two
materials include volume, momentum and energy. It is not necessary to specify all these quantities. For instance, the
closure model should work for the Lagrange scheme based on the single-velocity approximation (e.g. 45) by setting
momentum change χm = 0 and δMlul

= 0.
The closure model can handle general materials, and it is computationally efficient in the sense that it requires

neither iterations nor sub-cycling in time. The closure model is also robust in the sense that it maintains the positivity
of volume and entropy inequality. The model requires no knowledge of neighborhood cells, so that it is a local solver
best for parallel processing.

The closure model is useful for the cells that contain two materials inside, no matter how the cells are discretized,
either cell-centered or staggered, although it is only tested in the 1D Lagrange-Remap framework in this paper. The
closure model proposed is unconditionally stable for any Δt, so that it can also be coupled with the implicit Lagrange
schemes with a much larger time step. This can enhance the computational efficiency considerably for low speed
two-phase phenomena, in which the compressibility is not negligible, such as cavitating flows. The multidimensional
extension of the closure model is possible, to be reported in a separate paper. A 2-D numerical result based on the early
version of the closure model, which did not include the positivity treatment for volume exchange as that discussed in
section 3.5.B.2., can be found in 15.
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19J. López, J. Hernández, P. Gómez and F. Faura, A volume of fluid method based on multidimensional advection and spline interface

reconstruction, J. Comput. Phys. 195 (2004) 718-742.
20E. Loth, Numerical approaches for motion of dispersed particles, droplets and bubbles, Prog. in Energy and Combustion Sci. 26 (2000)

161-223.
21A. Murrone, H. Guillard, A five equation reduced model for compressible two phase flow problems, J. Comput. Phys. 202, (2005) 664-698.
22W.F. Noh, P. Woodward, SLIC (Simple Line Interface Calculation). In Lecture Notes in Physics, van der Vooren AI, Zandbergen PJ (ed)

(1976) 330.
23S. Osher, and J. A. Sethian, Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations, J.

Comput. Phys. 79 (1988) 12.

22 of 23

Transdisciplinary Fluid Integration Research Center, Institute of Fluid Science, Tohoku University



24Pember RB, Anderson RW, A comparison of staggered-mesh Lagrange plus remap and cell-centered direct Eulerian Godunov schemes for
Eulerian shock hydrodynamics, UCRL-JC-139820, (2000)

25J.E. Pilliod Jr., E.G. Puckett, Second-order accurate volume-of-fluid algorithms for tracking material interfaces, J. Comput. Phys. 199 (2004)
465-502.

26E.G. Puckett, A volume of fluid interface tracking algorithm with applications to computing shock wave rarefraction, Proceedings of the 4th
International Symposium on Computational Fluid Dynamics, 1991.

27M. Raessi, J. Mostaghimi, M. Bussmann, Advecting normal vectors: a new method for calculating interface normals and curvatures when
modeling two-phase flows, J. Comput. Phys. 226 (2007) 774-794.

28W.J. Rider, D.B. Kothe, Reconstructing volume tracking, J. Comput. Phys. 141 (1998) 112-152.
29M. Rudman, Volume-tracking methods for interfacial flow calculations, Int. J. Numer. Meth. Fluids 24 (1997) 671-691.
30R. Saurel, R. Abgrall, A multiphase Godunov method for compressible multifluid and multiphase Flows, J. Comput. Phys. 150 (1999)

425-467.
31R. Scardovelli, S. Zaleski, Direct numerical simulation of free-surface and interfacial flow, Annu. Rev. Fluid Mech. 31 (1999) 567-603.
32R. Scardovelli, S. Zaleski, Analytical relations connecting linear interfaces and volume fractions in rectangular grids, J. Comput. Phys. 31

(2000) 228-237.
33R. Scardovelli, S. Zaleski, Interface reconstruction with least-square fit and split Eulerian-Lagrangian advection, Int. J. Numer. Meth. Fluids

41 (2003) 251-274.
34J.A. Sethian, P. Smereka, Level set methods for fluid interfaces, Annu. Rev. Fluid Mech. 341, (2003) 341-372.
35H.B. Stewart, B. Wendroff, Two-phase flow: models and methods, J. Comput. Phys. 56, (1984) 363-409.
36M. Sun, Volume tracking of subgrid particles, Int. J. Numer. Meth. Fluids 66 (2011) 1530-1554.
37M. Sun, A thermodynamic and dynamic subgrid closure model for two-material cells, Int. J. Numer. Meth. Fluids, in press, (2013).
38M. Sun, K. Takayama, Conservative smoothing on an adaptive quadrilateral grid, J. Comput. Phys. 150 (1999) 143-180.
39M. Sun, K. Takayama, E.V. Timofeev EV, P.A. Voinovich, Direct numerical study of the dynamical shock-dust interaction, 21th Intl Sym-

posium on Shock Waves, July, 1997, Australia
40M. Sussman, E.G. Puckett, A coupled level set and volume-of-fluid method for computing 3D and axisymmetric incompressible two-phase

flows, J. Comput. Phys. 162, (2000) 301-337.
41B. van Leer, Towards the ultimate conservative difference scheme. V, a new approach to numerical convection, J. of Comput. Phys, 32, 101,

(1979)
42A.B. Wood, A Textbook of Sound, G. Bell & Sons Ltd., (1930), New York
43P. Woodward, P. Colella, The numerical simulation of two-dimensional fluid flow with strong shocks, J. Comput. Phys, 54, 115, (1984)
44T. Yabe, F. Xiao, T. Utsumi, The constrained Interpolation Profile method for multiphase analysis, J. Comput. Phys. 169 (2001) 556-593.
45Y.V. Yanilkin, E.A. Goncharov, V.Y. Kolobyanin, V.V. Sadchikov, J.R. Kamm, M.J. Shashkov, W.J. Rider, Multi-material pressure relaxation

methods for Lagrangian hydrodynamics, Computers & Fluids, 2012, http://dx.doi.org/10.1016/j.compfluid.2012.05.020
46D.L. Youngs, An interface tracking method for a 3D Eulerian hydrodynamics code, Technical Report 44/92/35, AWRE, 1984
47Q. Zhang, P.L.F. Liu, A new interface tracking method: The polygonal area mapping method J. Comput. Phys. 227 (2008) 4063-4088.

23 of 23

Transdisciplinary Fluid Integration Research Center, Institute of Fluid Science, Tohoku University


	Introduction
	Lagrange-remap strategy for single phase flows
	Lagrange step
	Remap step

	Lagrange-remap strategy for two-phase flows
	The effective state of the two-phase cells
	Density
	Velocity
	Pressure
	Sound speed


	Volume-tracking of subgrid-scale fluid particles
	The surface normal and the motion of a small particle
	Representation of resolvable and subgrid particles
	Advection of phase volumes
	Discretization of surface normal equations
	First-order scheme
	Second-order scheme
	Initial and boundary conditions

	The advection of a subgrid particle

	Thermodynamic and dynamic subgrid closure model for two-phase cells
	Partition of external conservative quantities
	Partition of momentum
	Partition of volume
	Partition of energy

	Modeling of subgrid wave interactions
	Momentum exchange
	Volume exchange
	Energy exchange

	Entropy inequality and numerical heat flux

	Numerical examples
	Lagrange-remap for single phase flows
	Lagrange-remap for two-phase flows

	Concluding remarks

