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Realization of Complex Real Blood Flows by Fluid 

Informatics 

T. Hayase, A. Shirai, and K. Funamoto 

Measurement-integrated (MI) simulation is a numerical flow analysis method with a 

feedback mechanism from measurement of a real flow. It correctly reproduces a real flow 

under inherent ambiguity in a mathematical model or a computational condition. In this 

paper we theoretically investigated the destabilization phenomenon of MI simulation, in 

which analysis error suddenly increases at some critical feedback gain. This phenomenon 

has been considered as instability of a closed-loop feedback system, but present study treated 

it as that of a numerical scheme. First, the mechanism of the destabilization phenomenon 

was investigated based on the sufficient condition of the convergence of iterative calculation 

of existing MI simulation. It was found that the feedback signal in the source term 

destabilized the iterative calculation. Then, a new MI simulation scheme was derived by 

evaluating the feedback signal in the linear term to remove the cause of the destabilization. 

The validity of the present theoretical analysis was verified for examples treated in former 

studies of MI simulations: blood flow in an aneurismal aorta with ultrasonic measurement, 

blood flow in a cerebral aneurism with magnetic resonance measurement, Karman vortex 

street behind a square cylinder with PIV measurement, and fully developed turbulent flow 

in a square duct with ideal measurement. Occurrences of destabilization phenomenon in all 

the examples were well explained by the condition of this study, especially for cases of 

relatively small time steps and large feedback gains. Furthermore, the new MI simulation 

scheme realized the analysis without the destabilization phenomenon. The present 

theoretical result confirming that the destabilization phenomenon is not the instability of the 

feedback system but that of a numerical scheme is generally applicable to MI simulations 

using the velocity error for the feedback signal.  

4.1. Introduction 

Understanding complex blood flows in living bodies is essential to realize advanced diagnosis and treatment for 

circulatory diseases. The author’s group has been doing research to analyze complex blood flows by numerical 

simulation, experimental measurement, and their coupled method. This article explains a part of our research 

activities on stabilization of measurement-integrated simulation by elucidation of destabilizing mechanism
1
. 

Obtaining accurate and detailed information of real flows is a critical issue in many fields such as weather 

forecasting, flight control, intraoperative blood flow monitoring, and nuclear power plant operation. Measurement 

and numerical simulation are widely used for analysis of flow phenomena. Generally speaking, measurement is the 

most direct technique to obtain the state of real flow within a range of its accuracy, but it is difficult to measure the 

complete states of flow, such as pressure and velocity, which widely spread in space and time. On the other hand, by 

use of numerical simulation, the complete flow states can be obtained, but it is essentially difficult to exactly 

reproduce the real flow due to inevitable disturbances or ambiguity in initial or boundary conditions. 

In order to overcome the difficulty in exactly reproducing real flows, various methods have been proposed to 

integrate measurement and simulation. In the meteorological field, many studies have been performed for data 

assimilation to obtain initial conditions for numerical weather prediction. Recently, the four-dimensional variational 

method (4D VAR) and the ensemble Kalman filter are being intensively studied
2, 3

. The Tichonov regularization 

technique, which is common in inverse problems, has been applied to estimate the pressure distribution around an 

airfoil in the aerospace field
4
. In the field of visualization measurement, pressure and velocity distributions are 

obtained by integrating PIV measurement and flow simulation
5
. State estimation methods in control theory, such as 
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the observer or the Kalman filter, have been applied to flow problems. Unsteady flow in a pipe has been analyzed 

with the Kalman filter
6
, and measurement-integrated simulation (hereafter abbreviated as “MI simulation”) has been 

proposed by applying the concept of the observer to a flow simulation
7, 8

.        

In MI simulation, a time-dependent flow simulation is performed by applying a feedback signal which is 

proportional to the difference between the simulation result and the measurement of a real flow (see Fig. 1). In 

practice, modification of the computational scheme is quite simple, only external force terms being added to the 

governing equations corresponding to the feedback signal. If the feedback law is designed appropriately, the 

computational result asymptotically converges to the state of the real flow by the effect of continuous correction 

with measurement data, and the result of MI simulation can be used as a good estimation of the real flow after some 

convergence time. This principle of MI simulation is the same as that of the observer in control theory, and the 

characteristic point of MI simulation is that a large dimensional nonlinear model of computational fluid dynamics 

(CFD) is used as a mathematical model. This technique has been successfully applied to a variety of flow problems: 

a fully developed turbulent flow in a square duct
7, 8

, Karman vortex street behind a square cylinder in a wind tunnel 

with pressure sensor measurement on a cylinder surface or velocity field measurement by PIV
9, 10

, blood flow in an 

aortic aneurysm with Doppler velocity measurement using an ultrasonic diagnosis device
11, 12

, blood flow in an 

aneurism at a cerebral artery bifurcation with velocity measurement using MRI diagnosis equipment
13

, and turbulent 

flow through an orifice with pressure measurement
14

.  

In designing MI simulation, the general theory of observers cannot be directly applied since the basic equations 

of MI simulation are nonlinear and do not have minimal dimensions. Recently, a theoretical study to design MI 

simulation based on the linearized error 

dynamics appeared, but its application is 

limited to simple problems
15

. Therefore, 

design of the feedback law in existing MI 

simulations is made by trial and error 

based on physical considerations.  

A problem in the MI simulation 

design is the occurrence of the 

destabilization phenomenon, in which the 

analysis error suddenly increases above 

some critical value of the feedback gain. 

In a previous study of ultrasonic-

measurement-integrated simulation of 

blood flow in an aneurismal aorta, it was 

pointed out that the critical feedback gain 

was inversely proportional to the time step 

of the simulation
12

, but neither the 

generality of this relation nor the mechanism of the destabilization phenomenon has been clarified. In control theory 

it is well known that a closed-loop system with a simple proportional feedback mostly undergoes instability with 

increasing feedback gain
16

. Since MI simulation is a typical closed-loop feedback system, the destabilization 

phenomenon has naturally been considered to be the instability of the feedback system
8, 9

. Another possible cause of 

the instability of a numerical scheme has not been considered. The steady error and the time constant are important 

parameters determining the reproducibility of real flows and traceability to unsteady flows, respectively, and they 

decrease with increasing the feedback gain in ordinary situations. Therefore, the existence of the upper limit in the 

feedback gain due to the destabilization phenomenon is a serious problem in MI simulation design. In order to solve 

this problem, it is critically important to elucidate the mechanism of the destabilization phenomenon and to establish 

a new MI simulation scheme stabilized by removing the cause of the destabilization.               

This paper is a theoretical study to elucidate the mechanism of the destabilization phenomenon and to establish 

a new stabilized MI simulation scheme. Especially we focus on the instability of numerical scheme instead of that of 
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the feedback system as a possible cause of the destabilization. In section 4.2, the mechanism of the destabilization 

phenomenon is theoretically investigated based on the fundamental equations of MI simulation, and a new MI 

simulation scheme is then derived. Validity of the theoretical analysis is verified in section 4.3 for various examples: 

ultrasonic-measurement-integrated simulation of blood flow in an aneurismal aorta, MR-measurement-integrated 

simulation of blood flow in a cerebral aneurism, PIV-measurement-integrated simulation of Karman vortex street 

behind a square cylinder, and general MI simulation of a fully developed turbulent flow in a square duct. 

Conclusions of this work are summarized in section 4.4. 

 

Nomenclature 

 A : general matrix 

 f : external force, body force divided by fluid density 

 
Nf : discretized external force (feedback signal), 3N dimensional vector  

 Ng : discretization of convection and diffusion terms of Navier-Stokes equation, 3N dimensional vector 

function of Nu  

 G : linearization of nonlinear function Ng , 3N3N matrix  

 G : coefficients subtracted from G , 3N3N matrix  

 K : feedback gain matrix, 3N3N matrix 

 n: index of iterative calculation 

 N: number of computational grid points 

 p: pressure field divided by fluid density 

 Np : discretized pressure field divided by fluid density, N dimensional vector 

 Nq : discretization of divergence of convection term in pressure equation, N dimensional vector function of Nu  

 t: time 

 u : velocity vector field 

 Nu : discretized velocity vector field, 3N dimensional vector  

 x: general vector 

 : dividing points of ( 1)n

N


u  and ( 2)n

N


u , 3N dimensional vector 

 t: time step 
( 1)( )n

N


Φ u Coefficients of linearized term evaluated with latest values in iterative calculation, 3N3N matrix 

( 1)( )n

N


Γ u term evaluated with previous values in iterative calculation, 3N dimensional vector 

 : kinematic viscosity  

 N : discretization of gradient operator  , 3NN dimensional matrix 

 N : discretization of Laplace operator  , NN dimensional matrix 

Superscripts 

 (n): values at n-th iteration  

 *: values of real flows 

 ': derivative with respect to Nu  

Subscripts 

 N: discretized values 

 N, (-1): the first component "N" represents discretized values and the second one "(-1)" represents values at 

previous time step 

 crit: critical values for destabilization phenomenon   
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4.2. Theoretical Analysis of Destabilization Phenomenon 

In this section, the mechanism of destabilization phenomenon is theoretically investigated based on the 

fundamental equations of MI simulation, and then a stabilized MI simulation scheme is derived by removing the 

cause of the destabilization. 

4.2.A. Destabilization Mechanism 

Governing equations of MI simulation are the Navier-Stokes equation including an external force term and the 

pressure equation. 

  p
t




      


u
u u u f ,  (4.1) 

  p    u u f , (4.2) 

where p is the pressure divided by the fluid density and f is the external force, or the body force divided by the fluid 

density, which is used as the feedback signal. 

After discretization in space coordinates we obtain the following equations: 

 N

N N N N N

d

dt
  

u
g u p f , (4.3) 

  T

N N N N N N  p q u f , (4.4) 

where Nu  denotes the 3N dimensional vector consisting of velocity vectors at the computational grid points (N: 

number of grid points), Np  is the N dimensional vector of the pressure divided by the density, Ng  and Nq  are the 

3N and N dimensional nonlinear functions of Nu  derived from the first and the second terms of Eq. (4.1) and the 

first term of Eq. (4.2) in the right-hand side, respectively, N  and N  are the 3NN and NN dimensional matrices 

of discretized form of the gradient   and Laplace operator  , respectively. In this paper we consider the case in 

which the 3N dimensional vector of the external force term (feedback signal), Nf , is given as a linear function of the 

velocity error vector: 

 *

N N N  f K u u ,  (4.5) 

where K is the 3N3N dimensional feedback gain matrix, and *

Nu  is the 3N dimensional vector of measured 

velocity vectors. It is noted that unmeasurable elements of *

Nu  and corresponding columns of K are set to zero. 

First order implicit scheme  

First, we consider the case in which the time derivative term of Eq. (4.3) is discretized with the first order 

implicit scheme. In this case, considering Eq. (4.5), we obtain the following expression. 

,( 1) *( ) ( )
N N

N N N N N N
t


   



u u
g u p K u u , (4.6) 

where (-1) of the second component of subscript of left-hand side represents the value of the former time step. 

In the present study we assume the SIMPLER method
17

 as the numerical scheme. Because of the space 

limitation, the standard way to deal with the pressure equation and the pressure correction equation is omitted in the 

followings. Detailed description of the numerical scheme is given in the reference
17

.    

Since the first term of the right-hand side of Eq. (4.6) is nonlinear with respect to Nu , the term is linearized and 

the resultant linear equation is repeatedly solved until the convergent solution is obtained. From Eq. (4.6) the 

fundamental equation for the iterative calculation of MI simulation in former studies is derived as Eq. (4.7) with the 

initial condition, (0)

Nu .  
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( 1)

( 1) ( ) ( 1)

( 1) ( 1) ( 1)

,( 1)( 1) ( 1) ( 1) ( 1) ( 1) *

( 1)

( ) ( ), 1,2,3

( ) ( ) ( )

( ) ( ) ( )

with

( )
n

N

n n n

N N N

n n n

N N N

Nn n n n n

N N N N N N N N

n N

N

N

n

t

t

d

d 

 

  

    



 

  


    




u

Φ u u Γ u

I
Φ u G u G u

u
Γ u G u u p u Ku Ku

g
G u

u

. (4.7) 

The above linear equation for ( )n

Nu  is solved with given ( 1)n

N


u where n in the superscript is the index of iteration. A 

( 1)( )n

N


G u is the 3N3N matrix of linearized coefficients obtained from the nonlinear term 

Ng  in Eq. (4.6) by 

evaluating its coefficients with the values at the former iteration step ( 1)n

N


u . The matrix ( 1)( )n

N


G u  represents the 

terms removed from those with the matrix ( 1)( )n

N


G u  in  and added in  to keep the consistency. Example of 

( 1)( )n

N


G u  is found in the common treatment of the discretized convection terms in which some terms are moved to 

the source term in order to improve convergence property of the numerical scheme
(17)

. The ( 1)( )n

N N


p u  is obtained 

from the discretized pressure equation derived from Eq. (4.4). It is noted that the feedback signal is included in  as 

the source terms in the formulation of MI simulation of former studies.      

Taking the difference between Eq. (4.7) evaluated at iteration number n and that evaluated at n-1, we obtain the 

following expression:   

( 1) ( ) ( 2) ( 1) ( 1) ( 2)( ) ( ) ( ) ( )n n n n n n

N N N N N N

      Φ u u Φ u u Γ u Γ u .  (4.8) 

Applying the mean value theorem, the left-hand side of the above equation is written as: 

( 1) ( ) ( 1) ( 1) ( 1) ( 1) ( 2) ( 1)

( 1) ( ) ( 1) ( 1) ( 1) ( 2)

( ) ( ) ( ) ( )

( )( ) ( ) ( )

n n n n n n n n

N N N N N N N N

n n n n n n

N N N N N N

      

    

  

   

Φ u u Φ u u Φ u u Φ u u

Φ u u u Φ α u u u
,  (4.9) 

where Φ  is a derivative of with respect to Nu , and  is an appropriate dividing point of ( 1)n

N


u  and ( 2)n

N


u . 

Introducing the above relation into the left-hand side of Eq. (4.8), we obtain the following relation: 

 ( 1) ( ) ( 1) ( 1) ( 1) ( 2)( )( ) ( ) ( ) ( )n n n n n n

N N N N N N

         Φ u u u Φ α u Γ β u u ,  (4.10) 

where Γ  is a derivative of  with respect to Nu , and  is an appropriate dividing point of ( 1)n

N


u  and ( 2)n

N


u . 

Taking the norms of Eq. (4.10), the following relation generally applies: 

( 1)

( ) ( 1) ( 1) ( 2)

( 1)

( ) ( )

( )

n

Nn n n n

N N N Nn

N



  



  
  

Φ α u Γ β
u u u u

Φ u
. (4.11) 

Norms of matrices in the above expression are defined as the induced norms which represent the maximum 

magnification of linear transformation as
19

 

max



x 0

Ax
A

x
. (4.12) 

From Eq. (4.11), the sufficient condition of convergence of 
( )n

Nu  as n  is derived so that the coefficient in the 

iteration is less than 1, or  

( 1)

( 1)

( ) ( )
1

( )

n

N

n

N





  


Φ α u Γ β

Φ u
. (4.13) 

Substituting the second and third expressions of Eqs. (4.7) into the above expression, we obtain the following 
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relation: 

( 1) ( 1)

( 1) ( 1)

( ) ( ) ( ) ( ) ( )
1

( ) ( )

n n

N N N N

n n

N N
t

 

 

       


 


G α u G α u G β β G β p β K

I
G u G u

, (4.14) 

where G , G , and N
p  are derivatives of G , G , and Np  with respect to Nu . 

We consider the case in which the computational time step t is relatively small and the feedback gain is 

relatively large. The leading term of the numerator of Eq. (4.14) is then considered to be -K and that of the 

denominator be I/t, and therefore we obtain an approximate formulation for the sufficient condition of convergence 

for the iterative calculation of MI simulation as: 

1

t



K ,  (4.15) 

and the critical value of the feedback gain matrix norm above which the destabilization phenomenon occurs as: 

crit

1

t



K .  (4.16) 

This relation agrees with the empirical relation obtained in a former study
12

. 

By summarizing the above discussion, the destabilization phenomenon of existing MI simulation is ascribed to 

the fact that a large feedback signal in the source term determines the leading term of the numerator of the 

coefficient for the successive change in the iterative calculation, and, therefore, divergence occurs with the 

coefficient larger than 1, or the feedback gain larger than the critical value. 

Patankar gave four rules which ensure the stable convergence of a finite-volume-based algorithm towards a 

physically realistic numerical solution
17

. In Rule 3: Negative-slope linearization of the source term, he pointed out 

that an appropriate linearization of the source term is a key to obtain convergent solution. The present destabilization 

phenomenon of MI simulation is considered to be the result of an inappropriate treatment of the source term.    

        

Second order implicit scheme  

Next, we consider the case in which the time derivative term of Eq. (4.3) is discretized with the second order 

implicit scheme. In the authors’ former studies of MI simulation, the following expression was used for the second 

order discretization of the time derivative term
20

. 

,( 1) ,( 2) ,( 1) ,( 1) ,( 2)3 4 2

2 2

N N N N N N N N

t t t

        
 

  

u u u u u u u u
, (4.17) 

where (-1) and (-2) of the second component of subscript represent the values before one time step and two time 

steps, respectively. The right-hand side of the expression consists of the first order discretization and the correction 

term.  

Iterative calculation is represented in the same way as in the case of the first order implicit scheme in Eq. (4.7) 

with different expressions in denoted by underline as 

( 1) ( ) ( 1)

( 1) ( 1) ( 1)

( 1)

,( 1) ,( 1) ,( 2)( 1) ( 1) ( 1)

( 1) ( 1) *

( ) ( ), 1,2,3

( ) ( ) ( )

2
( ) ( )

2

( )

n n n

N N N

n n n

N N N

n

N N N Nn n n

N N N

n n

N N N N N

n

t

t t

 

  



    

 

 

  


 
  

 

  

Φ u u Γ u

I
Φ u G u G u

u u u u
Γ u G u u

p u Ku Ku

.  (4.18) 
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It is noted that the correction term in Eq. (4.17) is included in the source term . Introducing the second and third 

expressions in Eqs. (4.18) to Eq. (4.13), we obtain the following relation.   

( 1) ( 1)

( 1) ( 1)

( ) ( ) ( ) ( ) ( )
2

1

( ) ( )

n n

N N N N

n n

N N

t

t

 

 

        




 


I
G α u G α u G β β G β p β K

I
G u G u

. (4.19) 

As with the discussion of the first order implicit scheme, we consider the case in which the computational time step 

t is relatively small and the feedback gain is relatively large. The leading term of the numerator of Eq. (4.19) is 

then considered to be /(2 )t  I K  and that of the denominator be I/t, and therefore we obtain the following 

relation for an approximate formulation for the sufficient condition of convergence of MI simulation: 

1

2 t t
 

 

I
K . (4.20) 

Considering that the feedback gain matrix K has only positive or zero eigenvalues since the feedback signal is 

applied to the direction to reduce the error in MI simulation and that the term /(2 )tI  shifts the eigenvalues of K in 

the amount of 1/(2t), we obtain the following relation:   

1

2 t



K , (4.21) 

and the critical value of the feedback gain matrix norm as: 

crit

1

2 t



K .  (4.22) 

The mechanism of the destabilization phenomenon of MI simulation with the second order implicit scheme is 

essentially the same as that for the first order scheme. The feedback gain is included as a leading term in the 

numerator of the coefficient determining the successive change in the iterative calculation. By comparing Eq. (22) 

with Eq. (4.16), it is noted that the critical gain for the second order implicit scheme is half that of the first order one. 

4.2.B. Stabilized MI Simulation Scheme 

From the discussion of the former section, the scenario of the destabilization phenomenon of MI simulation is 

described as follows. Since the feedback signal is included in the source term, the feedback gain matrix is included 

in the numerator of the coefficient which determines the magnification rate of the variation in the iteration process. 

When the feedback gain is larger than the critical value, the coefficient becomes larger than one, and the iterative 

calculation diverges. Therefore, it is naturally expected that the cause of the destabilization phenomenon is 

eliminated by evaluating the feedback signal in the linear term in the iterative calculation. 

First order implicit scheme  

First we consider the case of the first order implicit scheme. If we move the feedback term relating to Nu  from 

the source term in the right-hand side to the linear term in the left side of the first expression of Eq. (4.7), we obtain 

the new iterative calculation scheme as follows: 

( 1) ( ) ( 1)

( 1) ( 1) ( 1)

,( 1)( 1) ( 1) ( 1) ( 1) *

( ) ( ), 1,2,3

( ) ( ) ( )

( ) ( ) ( )

n n n

N N N

n n n

N N N

Nn n n n

N N N N N N N

n

t

t

 

  

   

 

   


   


Φ u u Γ u

I
Φ u G u G u K

u
Γ u G u u p u Ku

,  (4.23) 

where modification from the original scheme is underlined. Substituting the above expressions into Eq. (4.13), we 
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obtain the following relation. 

( 1) ( 1)

( 1) ( 1)

( ) ( ) ( ) ( ) ( )
1

( ) ( )

n n

N N N N

n n

N N
t

 

 

      


  


G α u G α u G β β G β p β

I
G u G u K

. (4.24) 

The above relation is satisfied for null feedback gain matrix if the original simulation scheme is properly 

formulated. Furthermore, this relation is satisfied for the feedback gain matrix having only positive or zero 

eigenvalues. The last condition for the gain matrix is always satisfied for appropriate MI simulation.  

In summary, Eq. (4.23) represents the new stabilized MI simulation scheme without the destabilization 

phenomenon. It is noted that the numerical scheme proposed here is an application of the standard procedure of 

linearization of source terms in numerical method
17

. The validity of the proposed scheme is confirmed in the next 

section.          

Second order implicit scheme  

Similarly to the above first order case, we obtain the new iterative calculation scheme by replacing the 

underlined feedback term relating to Nu  from  to  in Eq. (4.18) as follows:  

( 1) ( ) ( 1)

( 1) ( 1) ( 1)

( 1)

,( 1) ,( 1) ,( 2)( 1) ( 1) ( 1)

( 1) *

( ) ( ), 1,2,3

( ) ( ) ( )

2
( ) ( )

2

( )

n n n

N N N

n n n

N N N

n

N N N Nn n n

N N N

n

N N N N

n

t

t t

 

  



    



 

   


 
  

 

 

Φ u u Γ u

I
Φ u G u G u K

u u u u
Γ u G u u
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.  (4.25) 

Substituting the above expressions into Eq. (4.13), we obtain the following relation. 

( 1) ( 1)

( 1) ( 1)

( ) ( ) ( ) ( ) ( )
2

1

( ) ( )

n n

N N N N

n n

N N

t

t

 

 

       




  


I
G α u G α u G β β G β p β

I
G u G u K

.  (4.26) 

For the same reason as the first order case, the above relation is always satisfied for an appropriately designed 

MI simulation.    

In summary, Eq. (4.25) represents the new stabilized MI simulation scheme for the second order implicit 

scheme without the destabilization phenomenon. The numerical scheme proposed here is also an application of the 

standard procedure of linearization of source terms in numerical method
17

. 

4.3. Confirmation of Theoretical Results by Numerical Examples 

4.3.A. Methods 

In this section, the validity of the theoretical analysis presented in the former section is investigated with various 

examples of MI simulation. Treated flows and analysis conditions are summarized in Fig. 4.2 and Table 4.1. These 

flows are those treated in the authors’ former studies
8, 10, 11-13

. Figure 4.2(a) is an aneurismal descending aorta in 

which ultrasonic- measurement-integrated (UMI) blood flow simulation was performed. We deal with the case in 

which an esophageal ultrasonic probe of a medical ultrasonic diagnosis equipment is used. Doppler velocity or the 

blood velocity component along an ultrasonic beam measured with the color Doppler mode
21

 was fed back to the 

simulation at all grid points in the aneurism. The geometry of Fig. 4.2(a) was used for the analysis of a pulsated 

flow
11

, and the geometry shortened by cutting both upstream and downstream ends was used for the analysis of a 

steady flow
12

 The standard solution, which is a model of a real flow, was obtained by specifying both upstream and 

downstream velocity profiles, while MI simulation was performed with a uniform parallel flow at the upstream 



 

Transdisciplinary Fluid Integration Research Center, Institute of Fluid Science, Tohoku University 
 

 

9 

boundary and the free stream condition at the downstream boundary since the exact boundary condition is usually 

unknown in a realistic situation.                  

Figure 4.2 (b) is an aneurism developed at bifurcation of a cerebral artery in which steady and unsteady blood 

flow analysis were performed with MR-measurement-integrated simulation (MR-MI simulation)
13

. In this 

methodology velocity vector data measured by PC-MRI (Phase Contrast MRI) method are fed back to the 

simulation to obtain an accurate blood flow field under the condition of insufficient resolution in space and time or 

accuracy of common PC-MRI measurement. The boundary condition of the standard solution, or a model of a real 

flow, was determined by referring to the PC-MRI measurement data, while those of MR-MI simulation were set to 

uniform parallel inflow and free stream outflow conditions similar to the UMI simulation.     

Figure 4.2(c) shows PIV-measurement-integrated simulation (PIV-MI simulation) of Karman vortex street 

behind a square cylinder in a wind tunnel
10

. Two-dimensional velocity vector data on a middle plane perpendicular 

to the cylinder were measured by PIV measurement and fed back to a 2D flow simulation. The result of 3D 

simulation was used as the standard solution, and 2D MI simulation was performed with uniform parallel inflow and 

free stream outflow conditions.   

Figure 4.2 (d) shows MI simulation of a fully developed turbulent flow in a square duct
8
. In this case, we did not 

specify an actual measurement method and performed a numerical experiment for MI simulation with an ideal 

measurement with which the complete velocity information is available at all the grid points in a flow domain. As to 

the boundary condition at the upstream and downstream boundaries, a periodical condition was applied for the 

velocity, and a constant pressure difference was assumed for the pressure. A sequence of fully developed turbulent 

flow solutions in a statistically steady state was used as the standard solution, and the velocity field of the standard 

solution after a sufficient time had passed was used as the initial condition of the MI simulation. All three velocity 

components at all the grid points in the domain were used for the feedback signal.        

 

Cases 1a 1b 2a 2b 3 4a 4b 

MI 

simulation 
UMI simulation MR-MI simulation 

PIV-MI 

simulation 

general MI 

simulation 

Measurement 
Ultrasound  

(color Doppler mode)  

Magnetic resonance 

(phase contrast 

mode) 

PIV Not specified  

Subject 
Blood flow in 

aneurismal aorta 

Blood flow in 

cerebral artery 

Karman 

vortex 

Turbulent 

flow in 

square duct 

Steadiness of 

target flow 
Steady Unsteady Steady Unsteady Unsteady Unsteady 

Time 

derivative 

discretization  

1st order 2nd order 1st order 2nd order 
1st 

order 

2nd 

order 

Grid points 403449 433091 302726 11121 804040 

Reynolds 

number  
1,200 2,700(max) 230 420(max) 1,200 9,000 

References (11) (10) (12) (9) (7) 

 

Table 4.1: Analysis condition 
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In this section, the validity of the approximate sufficient condition of convergence of MI simulation with the 

first and second order implicit schemes in Eqs. (4.15) and (4.21) are examined for Cases 1-4 mentioned above. The 

validity of the stabilized MI simulation scheme for the first and second order implicit schemes in Eqs. (4.23) and 

(4.25) are then examined for 

Case 4 of the fully developed 

turbulent flow in a square duct.    

Evaluation of the norm of 

the feedback gain matrix K is 

necessary to examine the 

approximate sufficient 

condition of convergence in 

Eqs. (4.15) and (4.21). As 

mentioned in Eq. (4.12) in the 

former section, the norm of K 

is defined as the induced norm 

corresponding to the maximum 

amplification factor of linear 

transformation. As to UMI 

simulation in case 1, in which 

the external force of the 

feedback signal is applied in 

the direction of the ultrasonic 

beam instead of the velocity 

error direction, the feedback 

gain matrix K is given as the 

product of a diagonal matrix 

with a constant diagonal 

element of the feedback gain k 

and a matrix representing a 

projection of a unit vector in 

the direction of the velocity 

vector onto the ultrasonic beam 

direction at all the grid points. 

From the definition of the norm 

in Eq. (4.12), the norm of K in 

this case is calculated as k. In 

the other cases in which the 

external force of the feedback 

signal is applied to the direction 

of the velocity error, the 

feedback gain matrix is a 

diagonal matrix whose elements are a constant value of k. In more general cases in which a feedback signal is 

applied at partial grid points or for partial velocity components, the corresponding diagonal element of K is replaced 

by 0. In these cases, the norm of K is also calculated as k. Since the norm of the feedback gain matrix K is identical 

to the feedback gain k in all the cases treated in this paper, for simplicity, we use the term “feedback gain” also to 

mean the norm of the feedback gain matrix.              

In the numerical experiment, the critical feedback gain for convergence of MI simulations was determined as 

follows. In processing MI simulation, the error norm was defined as the average of the absolute value of the velocity 

 

          

(a) Blood flow in descending  (b) Blood flow in cerebral artery 

aorta with aneurysm (Case 1)    with aneurysm at bifurcation (Case 2) 

 

  
(c) Karman vortex street behind a square cylinder (Case 3) 

 
 (d) Fully developed turbulent flow in a square duct (Case 4) 

 

Figure 4.2:  Flow cases treated for verification of theoretical analysis 
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vector difference between the MI simulation and the standard solution over the flow domain, and the steady error 

norm was defined as the steady value of the error norm after the transient period. Convergence of the MI simulation 

to the standard solution is evaluated using the steady error norm. A number of MI simulations were performed with 

the feedback gain increased with some increment. The steady error norm first monotonically decreases with 

increasing feedback gain, but it suddenly increases above some critical gain. The critical feedback gain was 

determined as the maximum gain just before the sudden increase of the steady error norm.          

The same numerical scheme was used for all the cases treated in this paper. Governing equations were 

discretized with the finite volume method on a equidistant staggered grid system in Cartesian coordinates and were 

solved with a method
22

 similar to the SIMPLER method
17

. Convective terms were discretized with the QUICK 

scheme reformulated considering physical consistency
18

, and time derivative terms were discretized with the first or 

the second order implicit scheme
20

. The first order scheme was used in Cases 1a, 2a, 2b, and 4a, and the second 

order scheme was used in Cases 1b, 3, and 4b.        

4.3.B. Results and Discussion 

First, we present the results of verification of the approximate sufficient condition of convergence of MI 

simulation for the first and second order implicit schemes, Eqs. (4.15) and (4.21), respectively, for the conditions of 

the authors’ former studies.  

Table 4.2 shows a comparison of critical feedback gain matrix norms (hereafter, abbreviated as critical feedback 

gains) between the results of the present theory and the numerical experiment for all the cases treated in this study, 

and Fig. 4.3 shows the critical feedback gains with the computational time step plotted for the results of the first and 

second order implicit schemes in Table 2. Critical feedback gains in the numerical experiment were obtained from 

the literature for UMI simulation in Case 1
11,12

 and MR-MI simulation in Case 2
13

. For PIV-MI simulation in Case 3, 

the former study adopted the feedback gain of 3 but did not mention about the upper limit of the feedback gain
10

. 

Therefore, calculation was performed here in the same condition as the former study, the feedback gain being 

increased by an increment of 1. Since the steady error norm decreased for k = 4 but increased sharply for k = 5, the 

critical feedback gain for this case was determined as 4. As for MI simulation for the turbulent flow in a square duct 

in Case 4, computation was newly performed to determine the critical feedback gain both for the first and second 

order implicit schemes. Theoretical values for the critical feedback gain were obtained from Eq. (4.16) and (4.22) 

for the first and second order implicit schemes, respectively.                    

 

Cases 1a 1b 2a 2b 3 4a 4b 

Time 

derivative 

discretization 

1st  

order 

2nd 

order 

1st  

order 

1st  

order 

2nd 

order 

1st  

order 

2nd 

order 

Time step t 
0.01, 0.1, 

1 
0.125 1.05 4.85 0.2012 0.025 0.025 

Critical 
feedback gain 
matrix norm 
(Theory) 

100, 10, 1 4 0.95 0.21 2.5 40 20 

Critical 
feedback gain 
matrix norm 
(Numerical 
experiment) 

160, 20, 4 11 3.5 2 4 48 16 

 

Table 4.2: Critical feedback gains 
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From Table 4.2 and Fig. 4.3, the present theoretical result for the critical feedback gain for the convergence of 

MI simulation with the first and second order implicit schemes is in good agreement overall with those obtained in 

the numerical experiment for all the cases treated in this study. Degradation of the agreement for relatively large 

time steps is ascribed to less satisfaction of the assumption of a small time step and large feedback gain in the 

present theoretical analysis.    

Next, the validity of the proposed stabilized MI simulation scheme is investigated for Case 4 of the turbulent 

flow in a square duct. MI simulation was performed with the first order implicit schemes of Eqs. (4.7) and (4.23) 

and with the second order implicit schemes of Eqs. (4.18) and (4.25). It is noted that the standard solutions in both 

 

  

 (a) 1st order scheme          (b) 2nd order scheme  

Figure 4.3:  Critical feedback gain matrix norms with the computational time step compared between the  present theory and 

numerical experiment for various flow cases. 
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(a) 1st order scheme (Case 4a)        (b) 2nd order scheme (Case 4b) 

Figure 4.4:  Comparison between the former MI simulation scheme and the present stabilized scheme for the variation of the 

steady error norm with the feedback gain. Fully developed turbulent flow in a square duct (Case 4) 
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cases were identical obtained with the second order implicit scheme.   

Figure 4.4 (a) shows the variation of the steady error norm with the feedback gain for the MI simulation of the 

first order implicit scheme, comparing the proposed scheme (solid line) and the former scheme (broken line). It is 

noted that the critical feedback gain of convergence of MI simulation obtained from the theoretical analysis is 40 in 

this case (see Table 4.2). In the figure, both results are the same for the feedback gain k ≤ 48. In this range, the 

steady error norm monotonically decreases with increasing feedback gain. The error norm with the former scheme 

suddenly increases in the range of the feedback gain larger than 64 due to the destabilization phenomenon, but that 

of the proposed scheme is continuously decreasing in this region, with no occurrence of the destabilization 

phenomenon.   

 Figure 4.4 (b) shows a comparison between the proposed scheme (solid line) and the former scheme (broken 

line) for the results of the second order implicit scheme. The critical feedback gain obtained from the theoretical 

analysis is 20 in this case (see Table 4.2). In the figure, both results are nearly the same for the feedback gain k ≤ 16. 

In this range the steady error norm monotonically decreases and then remains at almost the same level with 

increasing feedback gain. The error norm with the former scheme suddenly increases in the range of the feedback 

gain larger than 32 due to the destabilization phenomenon, but that of the proposed scheme remains at a small level, 

showing that no destabilization phenomenon occurs. It is also noted that the first reduction of the steady error norm 

with increasing feedback gain is more significant for the case of the second order scheme of Fig. 4.4 (b) in 

comparison with that of the first order scheme of Fig. 4.4 (a). This is because the second order implicit scheme was 

used to obtain the standard solutions in both cases.  

 

4.4. Conclusions 

In this paper we have theoretically dealt with the destabilization phenomenon of MI simulation, in which the 

estimation error suddenly increases with a feedback gain above some critical value. This phenomenon has been 

considered as instability of a closed-loop feedback system, but present study treated it as that of a numerical scheme. 

First, the mechanism of destabilization phenomenon was investigated based on the sufficient condition of the 

convergence of iterative calculation of existing MI simulation. It was found that the feedback signal in the source 

term destabilized the iterative calculation. Then, a new MI simulation scheme was derived by evaluating the 

feedback signal in the linear term to remove the cause of the destabilization. The validity of the theoretical analysis 

was verified for examples of MI simulation for the ultrasonic-measurement-integrated simulation of blood flow in 

an aneurismal aorta, MR-measurement-integrated simulation of blood flow in a cerebral aneurism, PIV-

measurement-integrated simulation of Karman vortex street behind a square cylinder, and general MI simulation of 

fully developed turbulent flow in a square duct. Occurrences of the destabilization phenomenon in all examples were 

well explained by the approximate sufficient condition of the convergence of MI simulation, especially for cases 

with relatively small time steps and large feedback gains. Furthermore, the new MI simulation schemes with the first 

and second order implicit schemes realized the stable MI simulation without the destabilization phenomenon for 

large feedback gains. The theoretical result of this paper confirming that the destabilization phenomenon is not the 

instability of the feedback system but that of the numerical scheme is generally applicable to MI simulations using 

the velocity error in determining the feedback signal. A natural extension to other cases of MI simulations using the 

pressure error to determine the feedback signal is a future work.                  
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