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We consider the characteristic behavior (mainly
mean squared displacements) of a probe particle in
several types of viscoelastic fluids. In this study, the
probe particle undergoing Brownian motion in vis-
coelastic fluids is assumed to be described by the
generalized Langevin equation (GLE) [1]:

m
dv(t)

dt
= −

∫ t

0

ζ(t − t′)v(t′)dt′ + fR(t), (1)

where m is the mass of a probe particle and v(t)
is its velocity. Viscoelastic fluids can store energy
and have a finite relaxation time to dissipate it, so
that the embedded probe particle confined initially
in elastic surroundings undergoes finally dissipative
motion. This feature can be described by a mem-
ory kernel ζ(t) in the GLE [1]. The random Gaus-
sian force fR(t) and the time inhomogeneous friction
force ζ(t) are related each other by the fluctuation-
dissipation theorem: 〈 fR(t) · fR(t′)〉 = kBTζ(t − t′).
Here, kB is the Boltzmann constant and T is the tem-
perature of the fluid, and the bracket indicates the
ensemble average. In order to investigate the dynam-
ics of a probe particle described by Eq.(1), we have to
determine time dependency of unknown memory ker-
nel ζ(t). Here we adopt the phenomenological proce-
dure to obtain an explicit form of memory kernel, in
other words, the memory kernel is determined from
the bulk complex modulus of a viscoelastic fluid.

In this study we first reconsider the case of a
single-relaxation time Maxwell fluid, that is an ideal
model fluid in rheology. Many years ago several au-
thors [2] have shown from non-Newtonian fluid me-
chanics that the memory kernel for a particle embed-
ded in a single-relaxation time Maxwell fluid should
take a simple exponential form. Since a class of poly-
mer solutions can be classified as a two-fluid system
composed of a continuum matrix and a solvent, we
include the effect of solvent with the Newtonian vis-
cosity as well (Jeffreys fluid model). The memory
kernel for a probe particle is consequently expressed
by

ζ(t) = ζ0δ(t) + (ζp/τ) exp(−t/τ), (2)

for a single-relaxation time Jeffreys fluid. Here, ζ0, ζp

represent friction coefficients of a Newtonian solvent
and a polymer matrix having Maxwellian viscoelas-
ticity, respectively. τ is a characteristic relaxation
time. The dynamics of a Brownian particle in poly-
mer solutions, which have the bulk complex modulus

of the single-relaxation time Jeffreys fluid, is well de-
scribed by the GLE with the memory kernel given
by (2) [3, 4] although real materials showing perfect
single-relaxation time Maxwell (as well as Jeffreys)
behavior are very few. It has been also shown [3]
that an exponential form of memory function cor-
rectly leads to the complex modulus (or complex vis-
cosity) of a single-relaxation time Maxwell fluid by
using the extended Stokes’ friction law introduced
by Mason and Weitz [1]. By combining these facts,
it can be seen that the complex modulus and the
memory kernel are in one-to-one correspondence for
a single-relaxation time Maxwell fluid. Therefore we
can apply a relaxation-time spectrum of a rheolog-
ical material, which uses conventionally a Maxwell
element as a basis, to a memory kernel for a probe
particle.

As a particular example, we use a relaxation-time
spectrum having the same form as the chi-squared
distribution in order to explore how the whole time
behavior of characteristic quantities of a Brownian
particle is affected by continuous modification of the
memory kernel from an exponential form by study-
ing, e.g., mean squared displacements of probe par-
ticle. We also discuss our results in a possible con-
nection with a couple of topics: the probe particle
size effect, and the existence of anomalous diffusion.
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