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Anomalous phenomena are often considered to
be relate to complex structures of the materials. The
dispersive current observed in some amorphous semi-
conductors is interpreted by the fractal structures of
the potential. The frequency dependence of the re-
sponse of some viscoelastic materials is attributed
to the complex structures of high polymers. These
phenomena can be explained by fractional derivative
models (e.g. [1]). The pth order fractional derivative
is defined by

dpf(t)
dtp

=
dn

dtn

∫ t

a

(t− τ)n−p−1

Γ(n− p)
f(τ)dτ, (1)

where the integer n satisfies n− 1 ≤ p < n.
In some complex structure, the equation of con-

tinuity can be represented by the fractional equation
of continuity (FEC) defined by

∂pρ

∂tp
+∇ · J =

∂pµ

∂tp
, (2)

where 0 < p < 1. The RHS of (2) is the source term,
in which ∂µ(x, t)/∂t is the source in the usual sense:
the mass creation rate per unit volume per unit time
interval. The form of eq. (2) assures the conservation
of mass in the sense that the total mass in the volume
in consideration is the sum of the initial mass and the
created mass by the source term [2].

In the FEC, the increment of the density in a
volume element depends on the memory of (ρ − µ)
as well as the present ∇ · J and ∂µ/∂t because of
the integrated form of the fractional derivative. The
memory of (ρ−µ) can be replaced by the memory of
∇ · J using eq. (2) (see [2] for detailed explanation).
The memory of ∇ · J works in the opposite sense
to the usual ∇ · J. Thus, if ∇ · J works to increase
the density at τ(< t), then it works to decreases the
density at the time t.

An example of the curious behavior of the FEC is
presented by the fractional diffusion equation (FDE).
The FDE is derived from eq. (2) by substituting
J = −K∇ρ, where K > 0 is the (fractional) diffusion
coefficient.

Figure 1 shows a solution of the initial and the
boundary value problem of FDE for the spherical
symmetric case. In the central region the sink of the
form, ∂µ/∂t = −α(r)ρ, is assumed for r < 10. A ring
of dip forms around the central peak. This structure

is explained as follows. In the early stage, the ab-
sorption is not strong enough to make a dip at the
center. Then, the term K∇2ρ is the negative sign,
which works to enhance the central peak afterward
as the memory effect.
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Figure 1: A solution of the FDE with the sink at the
central region, α = 0.01 in 0 ≤ r < 10 and α = 0
in r ≥ 10. The other parameters for the FDE are,
p = 1/2 and K = 1. The curves show the densities
at t = 0, 500, 1000, . . . , 2500.

In the outer region, the curvature of ρ is small.
Thus, it is easy to have positive sign of K∇2ρ by
absorption. Once a dip forms the memory of the
positive sign of K∇2ρ tends to deepen the minimum
ρ. The profile of the central region is sensitive to
the initial distribution and the form of α(r). If the
central absorption region is narrow, a dip forms at
the center.
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