First-order phase transition of tethered membrane models

Hiroshi Koibuchi Ibaraki College of Technology Nakane 866, Hitachinaka, Ibaraki-312-8508, Japan

We find a first-order transition separating the smooth phase from the crumpled one in two kinds of tethered surface models [1, 2]. The canonical Monte Carlo (MC) simulations were carried out on triangulated spherical surfaces. Experimentally, a phase transition that is very similar to the transition in this paper has been detected recently [3].

The first model (model 1) is defined by the Hamiltonian which is a linear combination of the Gaussian term S_1 and the bending energy term S_2 such that

$$S = S_1 + bS_2, \quad S_1 = \sum_{(i,j)} \left(X_i - X_j \right)^2,$$
$$S_2 = \sum_{i,j} \left(1 - \mathbf{n}_i \cdot \mathbf{n}_j \right), \tag{1}$$

where $\sum_{(i,j)}$ denotes the sum over bond (i, j) linking the vertices X_i and X_j , $\sum_{i,j}$ is the sum over triangles i, j sharing a common bond, and b is the bending rigidity. The symbol \mathbf{n}_i in Eq. (1) denotes the unit normal vector of the triangle i.

The Hamiltonian of the second model (model 2) is given by a linear combination of the bending energy term S_2 in Eq.(1) and a hard-wall potential V such that

$$S = S_2 + bV, \quad V = \sum_{(ij)} V(|X_i - X_j|), \quad (2)$$

$$\int 0 \quad (0 < |X_i - X_j| < r_0)$$

$$V(|X_i - X_j|) = \begin{cases} 0 & (0 < |X_i - X_j| < r_0) \\ \infty & (\text{otherwise}), \end{cases}$$

where r_0 gives the upper bound on the bond length and is chosen as $r_0^2 = 1.1$.

The standard Metropolis MC technique is used to update the variables X. The surfaces are obtained by dividing the icosahedron, and hence, are uniform in the co-ordination number.

Figure 1(a) is the variation of S_2/N_B against MCS (Monte Carlo sweeps) of the model 1 on the N =10242 surface at the transition point, where N_B is the total number of bonds. The distribution (or histogram) $h(S_2)$ of S_2/N_B is plotted in Fig. 1(b). The double peak structure in $h(S_2)$ represents a discontinuity of S_2 , and hence the existence of a discontinuous transition in the model 1.

Figure 2(a) is the variation of S_2/N_B against MCS of the model 2 on the N=8412 surface at the transition point. The distribution (or histogram) $h(S_2)$ of S_2/N_B is plotted in Fig. 2(b). We find a discontinuous transition in the model 2 from the double peak structure in $h(S_2)$.

Figure 1: (a) Variation of S_2/N_B against MCS and (b) the histogram $h(S_2)$ of S_2/N_B , of the model 1, N=10242, b=0.77.

Figure 2: (a) Variation of S_2/N_B against MCS and (b) the histogram $h(S_2)$ of S_2/N_B , of the model 2, N=8412, b=0.686.

References

- H. Koibuchi, and T. Kuwahata, condmat/0506787, Phys. Rev. E72, in press.
- [2] H. Koibuchi et.al., *submitted*.
- [3] S. Chaieb, A talk in the workshop in Benasque Center for Sciences, "Biological Membranes: Current Challenges", (2005).