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   In adaptive optics, wave-fronts generated by a 
reference source often carry information through the 
transmission channel. However, the information on the 
wave-fronts is not completely transmitted to a receiver 
due to noises, such as atmospheric disturbance and 
measurement errors. Therefore, in order to realize 
reliable wave-front compensation, it is important to 
construct technologies  of wave-front reconstruction 
using wave-front slopes observed by optical instruments. 
Also, this problem has a difficulty that the conventional 
method is not successful, if “aliasing” occurs due to 
under-sampling. For this problem, the least-squares 
estimation [1] and its variants, the Bayesian inference 
based on the MAP estimate [2] have been attempted. On 
the other hand, based on the analogy between statistical 
mechanics of magnetic systems and information science, 
statistical mechanical methods [3] have been applied to 
problems, such as image restoration, error-correcting 
codes.  
   In this study, based on statistical mechanics of the 
Q-Ising model on the square lattice, we formulate the 
problem of wave-front compensation in adaptive optics. 
This method is based on the maximizer of the posterior 
marginal (MPM) estimate using the wave-front slopes 
corrupted by atmospheric disturbance and measurement 
errors. Then, our method is classified into two kinds 
according to the sensitivity of measurement as follows. 

If the Nyquist condition holds at every sampling 
point, the wave-front is retrieved using the MPM 
estimate as 
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using the system ),,1,/2/(}{ ,,,, QkQRkRzz yxyxyxyx L=+−= at the 
lattice points ,),( yx where we assume the models of noise 
probability and true prior as  
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where this model prior is considered to enhance smooth 
structures in the wave-fronts spreading in 0>z .  

On the other hand, when “aliasing” occurs, we 
retrieve wave-fronts based on the MPM estimate using 
an initial wave-front constructed so as to minimize the 
difference of the wave-front slopes between neighboring 
sampling points.  
   Next, in order to clarify the performance of our 
method, we apply the Monte Carlo simulation to a 
typical wave-front in adaptive optics. Here, atmospheric 
disturbance is assumed to be Gaussian noise onto the 
original wave-front and measurement errors are 
assumed to be the complex Gaussian noise onto the 

wave-front slopes of the corrupted wave-front. As one of 
our results is shown in Fig. 1, when the Nyquist 
condition holds, we find that even the MPM estimate 
using the model prior with uniform distribution works 
well for phase retrieal. Then, as two examples of our 
results are shown in Figs. 2 and 3, we also clarify that 
the model prior expressed by the Boltzmann factor of 
the Q-Ising model under the uniform field improves the 
performance of the MPM estimate, if we appropriately 
set parameters. Next, if “aliasing” occurs, we derive the 
result that the MPM estimate works well if we start from 
an appropriate initial wave-front constructed so as to 
minimize differences of neighboring wave-front slopes. 
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Figure 1:  The mean square error as a function of Tm due to  
the MPM estimate for atmospheric compensation.  
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Figure 2:  The mean square error as a function of h due to 
the MPM estimate for atmospheric compensation.  
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Figure 3:  The mean square error as a function of F due to  
the MPM estimate for atmospheric compensation.  
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