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Brownian coagulation of droplets has been at-
tracting wide attention in various systems, such as
emulsions, alloys, and suspensions [1]. Recently, we
have performed the simulations on dilute suspen-
sions of highly charged colloids with the effective
Tokuyama potential [2] and found that depending on
valency of charge, there exist three kinds of phases;
a gas phase for lower charges, a liquid-droplet phase
for medium charges, and a crystal-droplet phase for
higher charges [3]. In this paper, we discuss the dy-
namics of droplet growth in droplet phases, which
is described by a Brownian coagulation. Thus, the
average radius R(t) of the droplets is shown to obey
the same power-law growth in time as R(t) ∼ t1/6,
while the number n(t) of colloidal droplets decreases
in time as n(t) ∼ t−1/2 since the total volume of
droplets is conserved.

We consider a three dimensional suspension, which
consists of N colloidal particles with valency of bare
charge Z and radius a and Nc counterions with va-
lency of charge q and radius ac in an equilibrium
solvent with a dielectric constant ε and a viscos-
ity η at temperature T , where the total volume of
the system is given by V . Here Z À q > 0 and
a À ac. The global charge neutrality also requires
that NZ −Ncq = 0. The volume fraction of the col-
loidal particles φ is given by φ = 4π

3 a3(N/V ). The
position vector ri(t) of colloid i is then described
by the Langevin-type equation on the time scale of
tD(= a2/D0)

d

dt
ri(t) =

N∑

j 6=i

FT (rij(t)) + Ri(t), (1)

with the effective Tokuyama force between colloidal
particles given by [2]

FT (r) = D0Γ2a2

[(
Z

q

)2

e−r/λm − e−r/λ

]
r

r4
, (2)

where D0(= kBT/6πηa) is a diffusion constant of
a single colloid, Γ(= ZqlB/a) a coupling parame-
ter, λ(= a/(3φ Γ)1/2) the Debye screening length,
λm = (q/Z)1/2λ, rij = ri − rj , and rij = |rij |. Here
lB (= e2/εkBT ) is the Bjerrum length and kB the
Boltzmann constant, where we choose a = 55.4nm
and lB = 7.29 Å at room temperature T = 293
K here. The random velocity Ri(t) obeys a Gaus-
sian, Markov process with zero mean and satisfies
< Ri(t)Rj(t′) >= 2D0δ(t−t′)δi,j1, where the brack-
ets denote the average over an equilibrium ensemble.
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Figure 1: The time dependence of the number of
the colloidal droplets. (a) the numerical results for
a liquid-droplet phase at (φ,Z, q) = (0.003, 400, 2),
(0.002, 450, 2), and (0.002, 650, 1) (from up to to
bottom at the early time stage) and (b) for a
solid-droplet phase at (φ,Z, q) = (0.001, 850, 1),
(0.002, 550, 2), (0.003, 500, 2), and (0, 001, 800, 2)
(from up to bottom).

In this paper, we assume that the hydrodynamic in-
teractions between colloids can be neglected because
of φ ¿ 1.

Figure 1 shows a log-log plot of n(t) versus t for
two droplet phases. At an initial nucleation stage
n(t) increases because the colloids gather to make
droplets. After this stage, it starts to decrease be-
cause the droplets aggregate each other by a Brow-
nian coagulation, where n(t) behaves differently in
both phases because many isolated colloids still exist
in a liquid-droplet phase. At the late stage where all
isolated colloids disappear, n(t) obeys the power-law
decay in time as n(t) ∼ t−1/2, leading to R(t) ∼ t1/6.
These power laws are different from those obtained in
Ostwald ripening, where R(t) ∼ t1/3 and n(t) ∼ t−1.
The details will be discussed in the meeting.
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