Evolution from Quantum to Classical Fluctuation in the Soft Mode of KH_2PO_4

<u>J. Watanabe</u>, M. Watanabe and S. Kinoshita

Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan

The intensity ratio between Stokes (I_S) and anti-Stokes (I_{AS}) light scattering at frequency shift ω usually takes the Boltzmann factor $I_{\rm S}/I_{\rm AS} = e^{\hbar\omega/k_{\rm B}T}$, which is based on the quantum-mechanical detailed balancing in the light scattering process. Recently the deviation of the intensity ratio from the Boltzmann factor has been observed for quasi-elastic components in complex systems. In liquid carbon disulfide [1], $I_{\rm S}/I_{\rm AS}$ for cooperative rotational dynamics becomes unity in a frequency region less than several wavenumbers, while the usual relation holds for Boson peak. The symmetric spectral feature around $\omega = 0$ has also been reported for the quasielastic line in amorphous solids and supercooled liquids such as As_2O_3 [2]. Since the relation $I_S/I_{AS} = 1$ is expected for a classical fluctuation, these results mean that the dynamics in the frequency region loses the quantum character and behaves as a classical fluctuation. The classical character may be associated with Markovian nature resulting from dissipation in these cooperative fluctuations. In this report, we investigate the intensity ratio $I_{\rm S}/I_{\rm AS}$ of a paraelectric potassium dihydrogen phosphate (KH₂PO₄ or KDP) in which the quasi-elastic components appears originating from the polarization fluctuation which plays an important role as a soft mode in the ferroelectric phase transition ($T_c=122.2$ K) [3]. We expect that the analysis on the intensity ratio provides useful information on the soft mode which has dissipative and cooperative character.

Figure 1: Light scattering spectra of KDP.

In Fig. 1, we show light scattering spectra of KDP in paraelectric phase measured with spectral resolution of 1.0 cm⁻¹ under scattering geometry x(y,x)y, where x, y and z are the crystallographic

Figure 2: The ratio $R \equiv (I_{\rm S}/I_{\rm AS})/e^{\hbar\omega/k_{\rm B}T}$. The dash-dotted lines in (b) show $R = e^{-\hbar\omega/k_{\rm B}T}$ for $I_{\rm S}/I_{\rm AS} = 1$.

axes. A Lorentzian-like spectrum of the soft mode centered at $\omega = 0$ grows up as temperature approaches $T_{\rm c}$. The ratio $R \equiv (I_{\rm S}/I_{\rm AS})/e^{\hbar\omega/k_{\rm B}T}$ is obtained from $I(\omega)$ as shown in Fig. 2. In the analvsis, the spectral origin of each spectrum is adjusted to give R = 1 at $\omega = 40 \sim 50 \text{ cm}^{-1}$. At 293 K, R = 1 holds in the whole frequency region within the experimental error. At 170 and 140 K, however, R deviates from unity systematically in $\omega < 30$ cm⁻¹, and $I_{\rm S}/I_{\rm AS}$ approaches unity as decreasing ω . It should be noted that the frequency of $\omega < 30$ $\rm cm^{-1}$ corresponds to the region where the spectral intensity rapidly increases as approaching $T_{\rm c}$. These results may give us an useful information for investigating the evolution of the soft mode from microscopic quantum motions to the classical and macroscopic dynamics as approaching $T_{\rm c}$. We will also discuss the comparison between the soft mode and the cooperative rotational dynamics in liquid from the viewpoint of Markovian nature of these cooperative dynamics.

References

- J. Watanabe, Y. Watanabe and S. Kinoshita, Chem. Phys. Lett. **333** (2001) 113.
- [2] S. N. Yannopoulos and D. T. Kastrissios, Phys. Rev. E 65 (2002) 021510.
- [3] Y. Tominaga and H. Urabe, Solid State Commun. 41 (1982) 561.