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Summary

We study the aging of a glassy Lennard-Jones binary mixture with molecular dy-
namics simulations. We follow the evolution of the packing as a function of the system’s
age tw, the time passed since the system is quenched to below its glass transition temper-
ature. We focus on simple properties of all tetrahedra formed by the majority of particles.
We find that both the averages and the distributions of the edge length of tetrahedra
and of their standard deviation monotonically evolve over time: they age. Specifically
the aging process decreases the irregularity of tetrahedra while loosening them up. This
is in stark contrast with previous experiments on slightly charged hard-sphere colloidal
suspension where tetrahedral geometry was found to be a poor indicator of age. Further-
more, we confirm that tetrahedral packings sample microscopic structure in a non-trivial
way.

1. Introduction

Amorphous materials are abundant both in Na-
ture and as man-made substances, yet some of their
fundamental properties remain poorly understood.
One such puzzle is related to the glass transition
[1, 2, 3, 4, 5] and the non-equilibrium behaviour of
glasses [6]. As a liquid is quenched to temperatures
near its glass transition temperature TG its viscosity
increases by many orders of magnitude. On the mi-
croscopic scale, long time diffusion of the molecules
is inhibited and only localized, vibrational, motion
survives. However a diverging structural length-scale
which might explain such a slowing in the dynamics
and increase in viscosity has not yet been identified.

Once in the glassy regime a second puzzling phe-
nomenon surfaces: that of aging. Unlike for equilib-
rium systems, a dependence of dynamical properties
of glasses on the waiting time (tw) between vitrifica-
tion and the measurement precludes the possibility of
taking time averages, and statistics can only be im-
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proved by averaging over ensembles. This slow evolu-
tion slows as the glass ages, and again does not seem
to be accompanied by increasing length-scales.

Thus far much attention has been focused on two-
time quantities. The most basic of these is simply par-
ticle mobility. For example, experiments on dense col-
loidal suspensions [7, 8, 9] and simulations of Lennard-
Jones (LJ) systems [10] have found that the positions
of the most mobile and immobile particles are spa-
tially correlated. Heterogeneity has been found also in
the temporal domain [8, 11]: the rearrangements that
occur during aging are intermittent. Other two-time
correlation functions [12, 13] have shed some light on
the microscopic processes at play in supercooled and
glassy systems. Nevertheless, a structural tell-tale able
to discern different ages of a glass would be valuable.

One possible approach is to analyze the structure
of an aging glass in terms of tetrahedral packings. This
is motivated by the fact that a regular tetrahedron is a
highly dense object with a (hard-sphere) packing frac-
tion that reaches ϕtet ≈ 0.78 at close packing. Even
below this limit, tetrahedra’s high packing efficiency
would allow a collection of particles to increase lo-
cal vibrational entropy thus distributing available vol-
ume more evenly throughout the system, perhaps with
some cost in configurational entropy. A similar in-
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crease in vibrational entropy for organized packing is
what drives a hard-sphere supercooled liquid to even-
tually crystallize. On the other hand, tetrahedra do
not tile space, as could have been suspected by the fact
that ϕtet is greater than the highest packing fraction
possible for hard spheres, hexagonal close packing at
ϕhcp ≈ 0.74. One can postulate that a glass is caught
between the advantage to optimize local packing and
increase its entropy, and the constraint that it must
fill space. In this picture, aging could be seen as the
gradual, and perhaps only partial, resolution of this
frustration [14].

We previously analyzed the structure of an aging
colloidal glass in terms of tetrahedral packings [15, 16].
In those experiments we found that while tetrahedral
geometry was somewhat correlated with the aging dy-
namics, neither the averages or the distributions of
promising static tetrahedral characteristics aged.

Here we present a similar study carried out on
data from extensive Molecular Dynamics (MD) simu-
lations of a quasi-realistic glass former [13]. We find
that unlike in the case of colloidal experiments, the
tetrahedra formed by the particles do age and more-
over, they tend to become more regular with time.

2. Model and Computational Procedure

The MD simulation data we analyze here were
generously provided to us by H. E. Castillo and
A. Parsaeian [13].

The well known glass forming system first pro-
posed in Ref. [17] consists of a collection of 8000 par-
ticles of identical mass m (an 80:20 mixture of par-
ticles A and B). Over time-scales accessible by MD,
the binary nature of the system suppresses crystalliza-
tion and, in fact, this same system has been used to
study post-quench aging in the glassy regime [13, 18].
The particles interact via a LJ potential of the form
Vαβ(r) = 4ϵαβ

[
(σαβ/r)12 − (σαβ/r)6

]
, with α, β ∈

{A,B}. The values of ϵαβ and σαβ were ϵAA = 1.0,
σAA = 1.0,ϵAB = 1.5, σAB = 0.8, ϵBB = 0.5 and
σBB = 0.88. The potential is cut off and shifted at a
distance 2.5σαβ . Fifteen independent MD runs were
simulated in a cubic box of length L = 18.8 with pe-
riodical boundary conditions. The system was equili-
brated at a temperature T0 = 5.0 and then instantly
quenched to T = 0.4 < TMCT

C = 0.435 [17] (the Boltz-
mann constant is set to kB = 1.0). All times are re-
ported relative to tw = 0, the time of the quench. Fur-

Fig.1 Aging of the pair correlation function gAA(r).
The dotted, dashed and solid curves represent tw =
0, 10, and 105 (reduced LJ units) respectively.

ther details of the protocols can be found in Ref.[17].
In what follows we report all quantities using re-

duced LJ units of energy (ϵAA) and length (σAA), with
time in units of

√
mσ2

AA/48ϵAA.

3. Results

We focus our attention on the structure of the
majority (80%, type A) particles in order to simplify
the analysis. We start by calculating the pair correla-
tion function gAA(r) as a function of system age tw.
In Fig. 1 we plot gAA(r) at the quench (tw = 0) and
for the first (tw = 10) and last (tw = 105) time points
available after the quench.

We find that in contrast with our previous col-
loidal experiments [15, 16], the pair correlation func-
tion shows appreciable aging as has already been seen
by Kob and co-workers [17]. We also note that most
of the aging occurs within the first ten LJ time units
of the quench although it continues for the duration
of the simulation. Specifically, as the glass ages, the
first peak narrows and shifts to larger values of r. At
tw = 0 the structure is that of a liquid at T = 5 with a
wide range of accessible inter-particle distances. The
position of the peak of gAA(r) reflect the most likely
separation while its width tells us that thermal fluctu-
ations are quite important. After the thermal quench,
the change in rpeak reflects the new energetically fa-
vorable structure at the lower T . A qualitatively sim-
ilar shift was observed in the evolution of gBB(r) and
gAB(r) (data not plotted).

Note that the first minimum of gAA(r) remains
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Fig.2 Aging of the average tetrahedral looseness ⟨b⟩
and irregularity ⟨σb⟩. The values ⟨b⟩|tw=0 = 1.105 and
⟨σb⟩|tw=0 = 0.141 are not shown to allow for a loga-
rithmic tw-axis.

at r = 1.4 for all ages. Following the procedure in
Refs. [15, 16] we identify all particles of type A that
are within 1.4σAA of each other and label them as
nearest neighbors. We then define a tetrahedron as a
quadruplet of particles which are all nearest neighbors.
The average of the six edge lengths (or bonds) bi=0...5

is labeled b and represents the looseness of the tetra-
hedron. We also compute tetrahedral irregularity as
the standard deviation σb of the bi. Clearly there are
other geometrical quantities that describe tetrahedra
and we will mention a few before concluding. Here we
concentrate on b and σb to allow for a clear compari-
son with our previous experiments on colloidal glasses
[15, 16].

In order to determine whether these quantities
also age we plot the time dependence of b and σb

averaged over all tetrahedra (and all MD runs) in
Fig. 2. Since in Fig. 2 we plot tw on a logarithmic
axis we cannot include the values ⟨b⟩|tw=0 = 1.105 and
⟨σb⟩|tw=0 = 0.141, but it is clear that the majority of
the adjustment in these quantities happens within the
first ten LJ time units. In fact the monotonic evolu-
tion of ⟨b⟩ and ⟨σb⟩ slows down as the system ages and
after a few hundred LJ time units from the quench, the
change is less than 0.1% over a decade in time. This is
compatible with the virtually flat time-dependence of
these quantities observed in colloidal experiments [15].
This is especially so given then unavoidable lag be-
tween the macroscopic stirring which rejuvenates those
sample and texp

w = 0 which is set when transient flows
due to the stirring subside. In other words, this could

Fig.3 Probability distributions of tetrahedral loose-
ness. P (b) for tw = 0: circles, tw = 10: diamonds, and
tw = 105: squares. The dotted, dashed and solid lines
are the corresponding reference curves Pref(b) com-
puted by considering sextuplets of random AA near-
est neighbor bonds based on gAA(r). Inset: Rescaled
tetrahedral (symbols) and reference (solid lines) prob-
ability distributions for the three ages. The dashed
line is a Gaussian best fit.

mean that the current method of initializing aging ex-
periments in colloidal glasses forces one to miss the
crucial first few hundred time units. On the other
hand, this decelerating evolution is indicating that as
the glass ages, it is getting harder and harder to find
better ways to pack tetrahedra, and more interestingly
that the aging process increases the average regular-
ity of tetrahedra. The binary nature of the system
and the complex nature of the pair potentials (when
compared to hard-spheres) make it difficult to assert
whether the regularization of tetrahedra in the glass
is due to entropy alone. Nevertheless, this constitutes
a single-time structural property of a glass that shows
clear signs of aging.

To get a more complete picture of the changes
tetrahedra undergo during aging we now consider the
evolution of the distributions P (b) and P (σb). We
start by plotting the probability distribution of obtain-
ing a tetrahedron with average edge length b in Fig. 3
for the ages tw = 0 with circles, tw = 10 with dia-
monds, and tw = 105 with squares. Again in marked
contrast with our experimental work, we find that the
distribution changes with age: as tw increases P (b)
shifts to higher values of b and narrows. Here also, the
most drastic change occurs between the configuration
at tw = 0 and at the next available time tw = 10.
This change in P (b) is consistent with the increase in
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⟨b⟩ and decrease in ⟨σb⟩ observed in Fig. 2. We also
computed reference distributions Pref(b) of the aver-
age of six random nearest neighbor bonds at the three
different ages. These are shown as solid, dotted and
dashed curves respectively in the main plot of Fig. 3.
These distributions sample all nearest neighbor bonds
randomly, without the constraint that they be an edge
of a tetrahedron. We find that these reference distribu-
tions do not match the P (b) at the same age indicating
that tetrahedral bonds sample the set of nearest neigh-
bor bonds in a non-random way. Nevertheless, the
Pref(b) also age by shifting to higher b and narrowing.
In this sense, all nearest neighbor bonds age similarly.
The aging of this reference distribution is also related
to the aging of the pair correlation function gAA(r)
which in fact samples all bonds in the sample.

To determine whether the aging of P (b) can be
entirely described by the aging of its first and sec-
ond moments and whether the aging reference distri-
butions Pref(b) are qualitatively different from that of
the tetrahedral P (b) we plot the rescaled probability
density functions P ( b−⟨b⟩

σ⟨b⟩
) on a semi-logarithmic plot

in the inset of Fig. 3. We use σ⟨b⟩ to denote the stan-
dard deviation of looseness values b of all tetrahedra
at a given tw; this is distinct from σb, the irregular-
ity of a single tetrahedron. Both the tetrahedral and
reference data from all three ages collapse very well
indicating that ⟨b⟩ and ⟨σb⟩ are sufficient to describe
the aging of the tetrahedral edge length and that these
edge lengths age in a qualitatively similar manner to all
nearest neighbor bonds. In the inset we also included a
Gaussian best fit (dashed) curve which highlights that
P (b) is not a Gaussian distribution. The skewness of
all of the plotted distributions is about 0.2 and can be
attributed to the asymmetry of the LJ potential with
respect to its minimum.

Next we turn to the distribution of tetrahedra ir-
regularities P (σb) which is plotted for the same three
ages in Fig. 4. We find that the distribution ages sig-
nificantly: Firstly the peak of the distribution shifts to
lower irregularities, as could be predicted by looking
at the decrease of ⟨σb⟩ in the bottom pane of Fig. 2.
This implies that aging somehow homogenizes tetra-
hedra. On the other hand, the width of P (σb) stays
roughly constant as the glass ages. This means that
the variability of tetrahedral irregularity relative to the
average actually increases with age. In this relative
sense aging is instead diversifying the structure of the

Fig.4 Probability distributions of tetrahedral irregu-
larity. P (σb) for tw = 0: circles, tw = 10: diamonds,
and tw = 105: squares. The solid lines are reference
curves computed by considering sextuplets of random
AA bonds based on gAA(r) without the constraint that
they form tetrahedra.

sample. One more interesting observation is that the
shape of the distributions is qualitatively changing (go-
ing from left-skewed to slightly right-skewed) with age.
This is another static, one-time, description of the ge-
ometry of a glass that can tell the difference between
a young and an old glass.

As we did for the distribution of looseness val-
ues, we also calculated a reference Pref(σb) from the
standard deviations of random sextuplets of nearest
neighbor bonds. These reference curves are plotted
with full lines in Fig. 4 and surprisingly, they match
the tetrahedra curves fairly nicely, indicating that the
aging effects described above affect all bonds at the
same age in the same way.

4. Conclusion

We have analyzed the aging of a simple binary
Lennard-Jones glass forming model in terms of tetra-
hedral structure and compared this model with an ex-
perimental colloidal glass.

Our findings here seem somewhat at odds with
the colloidal suspension data. The present system
shows aging even in one-time structural quantities
such as the pair correlation function or the distribu-
tions of tetrahedral looseness values and irregularities.
That was not the case in the colloidal samples. This
discrepancy could be due to the rapidly decelerating
pace of the aging of structure: it is possible that most
of the aging occurs too quickly to be observable in
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the experiments. Another possible source of devia-
tion is the shape of the potential. Here we analyzed
a Lennard-Jones system with both attractive and re-
pulsive components, while the potential at work in the
experiments is purely repulsive and quasi-hard sphere.
To distinguish between these two possible causes fur-
ther experiments are necessary which avoid transient
flows while the glass is young and allow observation
sooner. Another, complementary approach would be
to simulate glasses with varying inter-particle poten-
tials to determine whether it can affect the way struc-
ture ages.

We have also shown that, here as in our colloidal
experiments, tetrahedral packing samples the micro-
scopic geometry of the glass in a non-trivial way.
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