
Brownian-Dynamics Simulation of Colloidal Suspensions

with Kob-Andersen Type Lennard-Jones Potentials1

Yuto KIMURA2 and Michio TOKUYAMA3

Summary

Extensive Brownian-dynamics simulations of binary colloidal suspention with Kob-
Andersen Lennard-Jones potential are performed in order to study the static and the
dynamic properties of supercooled liquid and also to elucidate the mechanism of glass
transition. The numerical results of several physical quantities, such as an effective
pressure, a radial distribution function, a mean square displacement, a non-Gaussian
parameter, and a self-intermediate scattering function, are then investigated. Thus,
it is shown that as the temperature is decreased, a crossover from a liquid state to a
supercooled state occurs smoothly without any first-order phase transitions. The slow
relaxation processes at lower temperatures are also discussed from a unified point of
view.

1. Introduction

The glass is a familiar and useful material to
the human being from ancient times. The traditional
method to obtain the glass is to cool the viscous liq-
uids rapidly from a higher temperature to a lower
temperature. With a sufficiently rapid cooling rate,
the system can avoid the crystallization at its freez-
ing point and become a supercooled liquid. If one
cools the system further, the system finally goes into
a glass state. The transition from the supercooled liq-
uid to the glass is called the glass transition. From
the physical point of view, however, it is not fully un-
derstood yet [1]. Recently, the slow dynamics near
the glass transition has attracted remarkable atten-
tion [2]. About two decades ago, the appearance of
the mode-coupling theory (MCT) triggered that this
field was warmed up [3, 4]. However, near the glass
transition, MCT fails to describe the whole dynamics
of the system since it assumes the singular behavior
for physical quantities near the glass transition. Re-
cently, Tokuyama has proposed the mean-field theory
(MFT) [5, 6], which was obtained from the nonlinear
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stochastic diffusion equation for colloidal suspensions
[7, 8], and shown that MFT well describes the uni-
versal behavior near the glass transitions. Computer
simulations have also provided us with much helpful
information for deeper understanding about those phe-
nomena. For a typical example, Kob and Andersen
have simulated the model of Ni80P20, which is known
as one of metallic glass former, and compared their
results with mode-coupling theory [9, 10, 11]. Today,
their model, the so-called Kob-Andersen model, is well
known as a good glass-forming system on computer
simulations. Recently, Flenner et. al. have performed
the Brownian-dynamics simulations on Kob-Andersen
model with 1000 particles [12, 13] and recovered the
supercooled state at temperatures lower than those in
the original Kob-Andersen model system.

In the present paper, we perform extensive
Brownian-dynamics simulations of binary colloidal
suspensions with Kob-Andersen type Lennard-Jones
potentials with 10976 particles and explore the static
and the dynamic properties of the model system from
a unified point of view.
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2. Starting Equations

We consider the three-dimensional system which
consists of N particles with mass m and radius a in the
equilibrium solvent with temperature T and viscosity
η. The whole system is given by a cubic box of size
L(= V 1/3), where V is the total volume of the system.
There are two types of particles, NA particles of type A

and NB particles of type B. We assume that the radius
a is of order 10−6 ∼ 10−9m. Hence they undergo a
Brownian motion. Let rα

i (t) be a position vector of
ith particle of type α at time t. Then, the particles
obey the Langevin equations

m
d2

dt2
rα

i (t) = −γ
d

dt
rα

i (t) +
A,B∑

β

Nβ∑
j 6=i

F αβ
ij (t) + Rα

i (t),

(1)
where γ(= 6πηa) denotes the friction constant and
F αβ

ij (t) the force between ith particle of type α and jth
particle of type β. Here Rα

i (t) denotes the Gaussian,
Markov random force and satisfies

< Rα
i (t) > = 0, (2)

< Rα
i (t)Rβ

j (t′) > = 2γkBTδ(t − t′)δijδαβ1, (3)

where the brackets < · · · > denote the equilibrium
ensemble average. Eq. (1) holds on the time scale of
order tB , where tB(= m/γ) is a Brownian relaxation
time. In the following, we neglect the hydrodynamic
interactions between particles. This is because they
are mainly described by the Oseen tensor and show
long-range interactions which are difficult to deal with
numerically.

We are interested only in the diffusion process
on the time scale of order tD, where tD(= a2/D0) is
a structural relaxation time. Here D0(= kBT/γ) is a
single-particle diffusion constant. Since tD >> tB , on
the time scale of order tD, we have d2rα

i (t)/dt2 ' 0.
Then, Eq. (1) reduces to

d

dt
rα

i (t) =
1
γ

A,B∑
β

Nβ∑
j 6=i

F αβ
ij (t) + fα

i (t), (4)

where fα
i (t) denotes the random velocity given by

fα
i (t) = Rα

i (t)/γ and satisfies

< fα
i (t)fβ

j (t′) >= 2D0δ(t − t′)δijδαβ1. (5)

This is a starting equation to solve numerically. We
discuss this next.

Fig.1 The effective pressure versus temperature.

3. Simulations

We choose NA = 8781 and NB = 2195 here,
where N = 10976 and NA/N ' 0.8. The force be-
tween the particles F αβ

ij is given by the Kob-Andersen
type Lennard-Jones potential

F αβ
ij = −∇Uαβ(rαβ

ij ), (6)

Uαβ(r) = 4εαβ

[(σαβ

r

)12

−
(σαβ

r

)6
]

, (7)

where εαβ and σαβ are chosen as in Ref. [9]; εAA = 1.0,
σAA = 1.0, εAB = 1.5, σAB = 0.8, εBB = 0.5, and
σBB = 0.88. In this model, both the crystallization
and the phase separation are known not to occur. The
length of force cutoff rc is set on 2.5σAA. The system
size L is fixed on 20.89σAA. Length, time, energy, and
temperature are scaled by σAA, tD, εAA, and εAA/kB ,
respectively. Periodic boundary conditions are used.
We integrate Eq. (4) at different temperatures by us-
ing Euler method with time step dt = 1 × 10−4. The
initial configurations are created by the random pack-
ing method [14]. Before we take the data, we wait for
long times to equilibrate the system.

4. Simulation Results

We first discuss the effective pressure P of the
system. One calculates it by using the virial theorem
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Fig.2 Radial distribution function of A-A correlation
for different temperatures T = 0.45, 0.47, 0.50, 0.55,
0.60, 0.70, 0.80, 0.90, 1.0, 1.5, 2.0, 3.0 and 5.0 (from
top to bottom).

given by

P =
NkBT

V
− 1

6V

〈
A,B∑
α,β

Nα∑
i

Nβ∑
j 6=i

F αβ
ij · rαβ

ij

〉
, (8)

where rαβ
ij = rα

i − rβ
j . In Fig. 1, the pressure P is

shown versus temperature. As the temperature de-
creases, the pressure decreases smoothly. There ex-
ists no jump in P over a whole temperature region.
This means that crystallization does not occur in the
present system. Hence we discuss how the structure of
the system changes as the temperature decreases. This
is done by calculating the radial distribution function
for A-A correlation gAA(r) given by

gAA(r) =
1

2NAρA

〈
NA∑
i

NA∑
j 6=i

δ(r − rAA
ij )

〉
, (9)

where ρA(= NA/V ) is the number density of the par-
ticles of type A. In Fig. 2, gAA(r) is plotted for var-
ious temperatures. At higher temperatures, gAA(r)
shows a structure observed in a liquid state. As T de-
creases, the split generally appears on the second peak
of gAA(r). This is well-known as one of characteristic
properties of supercooled liquids.

Next, we discuss the dynamics of the system. It is
convenient to introduce the mean square displacement

Fig.3 The log-log plot of the mean-square displace-
ment of the particles of type A for different tempera-
tures T=5.0, 3.0, 2.0, 1.5, 1.0, 0.9, 0.8, 0.7, 0.6, 0.55,
0.5, 0.47 and 0.45 (from left to right).

MA
2 of the particles of type A by

MA
2 (t) =

1
NA

NA∑
i

<
∣∣rA

i (t) − rA
i (0)

∣∣2 > . (10)

In Fig. 3, the simulation result is shown for different
temperatures. In a short-time region, MA

2 obeys a free
diffusion process given by

MA
2 (t) = 6D0t. (11)

In a long-time region, it obeys a long-time diffusion
process given by

MA
2 (t) = 6DL(A)

s (T )t, (12)

where D
L(A)
S (T ) denotes the long-time self-diffusion

coefficient and depends on T . Thus, there is a
crossover from a free diffusion process to a long-time
diffusion process. This crossover is independent of the
temperature, although D

L(A)
S decreases drastically as

the temperature decreases. In an intermediate-time
region, however, the dynamics of MA

2 (t) strongly de-
pends on the temperature. After short times, the
many-body interactions become important and pre-
vent MA

2 (t) to increase, leading to plateaus at lower
temperatures. This is the so-called cage effect.

In order to investigate how the dynamics at lower
temperatures is different from that at higher temper-



88 KIMURA and TOKUYAMA / Rep. Inst. Fluid Science, Vol.19 (2007)

Fig.4 The non-Gaussian parameter of the particles of
type A versus time for different temperatures. The
details are the same as in Fig. 3.

atures, it is also convenient to introduce the non-
Gaussian parameter αA

2 of the particles of type A by

αA
2 (t) =

3
5

MA
4 (t)

(MA
2 (t))2

− 1, (13)

where MA
4 (t) is the 4th moment given by

MA
4 (t) =

1
NA

NA∑
i

<
∣∣rA

i (t) − rA
i (0)

∣∣4 > . (14)

In Fig.4, αA
2 (t) is plotted versus time for different tem-

peratures. As the temperature decreases, the peak
position τα of αA

2 increases and its peak height grows
drastically. This shows that the spatial heterogeneities
play an important role at lower temperatures. The
time τα is the so-called α-relaxation time.

Finally, we discuss the self-intermediate scatter-
ing function FS(k, t) of type A, which is given by

FA
S (k, t) =

1
NA

NA∑
i=1

< eik·[rA
i (t)−rA

i (0)] >, (15)

where k denotes the wave number and FA
S (k, t = 0) =

1. The value of k is chosen as the first-peak position of
the static structure factor SAA(k), which is given by

SAA(k) = 1 + 4πρA

∫ ∞

0

[gAA(r) − 1]
sin(kr)

kr
r2dr.

(16)

Fig.5 The static structure factor of A-A correlation
versus wave number for different temperatures. The
details are the same as in Fig. 2

In Fig. 5, SAA(k) is plotted versus wave number
for different temperatures. The first-peak position is
found around k = 7.25. In Fig. 6, FA

S (k, t) is shown
versus time for different temperatures at k− 7.25. For
higher temperatures, FA

S (k, t) shows a single exponen-
tial like decay. For lower temperatures, one can see the
shoulders in the intermediate-time region. This corre-
sponds to the cage effect discussed in the mean-square
displacement MA

2 (t). The long-time decays around τα

are also different from an exponential decay because
the non-Gaussian parameter αA

2 (t) is large. This is
easily seen if one can transform Eq. (15) into a new
form

FA
S (k, t) ' exp

[
−k2 MA

2 (t)
6

+
1
2
k4

(
MA

2 (t)
6

)2

αA
2 (t)

]
.

(17)
Thus, both effects, cage effect and structural effect, are
included in the self-intermediate scattering function
FA

S (k, t).

5. Summary

In the present paper, we have performed the
Brownian-dynamics simulation on the binary colloidal
suspensions with the Kob-Anderson type Lennard-
Jones potentials. We have then investigated several
physical quantities at different temperatures, such as
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Fig.6 The self-intermediate scattering function of the
particles of type A versus time for different tempera-
tures at k = 7.25. The details are the same as in Fig.
3.

the pressure P , the radial distribution function gAA(r),
the mean-square displacement MA

2 (t), and the self-
intermediate scattering function FAA

S (k, t). Thus, we
have shown that as the temperature decreases, the sys-
tem smoothly becomes a supercooled state from a liq-
uid state without crystallization. In fact, the pres-
sure P decreases smoothly without any jumps as T

decreases. The split of the second peak of gAA(r) are
observed at temperatures lower than T = 0.6. This is
one of signs for a supercooled state. This situation is
the same as that in the Lennerd-Jones binary mixtures
[15].

We have not discussed the long-time self-diffusion
coefficient and several characteristic times. In order
to study whether the system is in a supercooled state
or not and also how the present system is different
from Lennard-Jones binary mixtures, we must explore
them from a unified point of view. This will be dis-
cussed elsewhere together with self-consistent analyses
of simulation results by the mean-field theory.
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