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Summary

We perform the extensive molecular-dynamics simulations of hard-sphere fluids.
The stable supercooled liquid state is obtained at high volume fraction on the 15%
polydisperse hard-sphere fluids, as the volume fraction is increased. It is shown that the
static properties and the dynamic properties, such as, the pressure, the long-time self-
diffusion coefficient, the non-Gaussian parameter and the self intermediate scattering
function in a supercooled liquid state and a liquid state.

1. Introduction

On the monodisperse hard-sphere fluids, there
exist a stable liquid state, a metastable coexistence
state, and a stable crystal state [1, 2, 3, 4]. On the
other hand, there exist a stable equilibrium liquid
state, a supercooled liquid state, a crystal state, and
a metastable supercooled liquid state on hard-sphere
fluids with 6% size polydispersity, as the volume frac-
tion is increased. Recently we have shown that the
crystallization occurs at those metastable supercooled
liquid state for finite long waiting time [5, 6].

In this paper, we perform the molecular-
dynamics simulations of hard-sphere fluids with 15%
polydispersity that is expected to avoid the crystal-
lization. The stable supercooled liquid state has been
obtained within our long-time simulation time. we dis-
cuss those supercooled liquid state and liquid state by
analyzing the non-Gaussian parameter and the self in-
termediate scattering function.

2. Model

We consider systems which consist of N =10976
polydisperse and monodisperse hard spheres dispersed
in a cubic cell with volume V at temperature T . Let
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xi, vi, and mi(= 4πai
3ρ/3) represent a position vec-

tor, a velocity vector, and a mass of ith sphere respec-
tively, where ai denotes the radius of ith sphere and ρ

a mass density. The distribution of the sphere’s radius
obeys the Gaussian distribution with standard devi-
ation s = 0.15 for the 15% polydisperse system and
s = 0 for the monodisperse system. Here the radius ai

is set as (1 − 3s)a < ai < (1 + 3s)a, where a denotes
the mean radius defined by a = 1

N

∑N
i=1 ai.

The control parameter is given by the volume
fraction ϕ defined as

ϕ =
4π

3
1
V

N∑
i=1

ai
3. (1)

The hard spheres in the system continue lin-
ear and constant motion except to collide with other
spheres. The energy and the momentum in the sys-
tem are kept constant, because we assume that spheres
make perfectly elastic collisions.

We try to prepare two kinds of initial config-
urations of spheres, the face-centered cubic (FCC)
configuration (Fig. 1(a)) and a random configuration
(Fig. 1(b)) [7]. However the spheres can not be ar-
ranged at the FCC lattice points in higher volume
fractions for the 15% polydisperse system. It indicates
that there does not exist the FCC crystal state in the
system. Therefore we set the initial configurations of
the 15% polydisperse system as only the random con-
figuration. Here the periodic boundary condition is
employed in order to simulate a bulk system.
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(a) (b)

Fig.1 Initial configuration of hard spheres. (a)Face-
centered cubic configuration and (b) random configu-
ration.

The unit of the velocity is given by

v0 =

√
3kBT

m
, (2)

where kB denotes the Boltzmann constant and m the
mean mass of spheres. The unit of length is the mean
radius of spheres a. The unit of time is given by

t0 =
a

v0
. (3)

In the following, all physical quantities are divided by
those characteristic values in our simulation.

3. Physical quantities

We calculated the pressure P , the mean-square
displacement M2(t), the self intermediate scattering
function Fs(t), and the non-Gaussian parameter α2(t)
in order to understand the behaviour of hard sphere
system.

The pressure is calculated by

PV

NkBT
= 1 − 2

3NkBT∆t

Cn∑
collision

⟨
mimj

mi + mj
vij · xij

⟩
.

(4)
Here Cn denotes the number of collisions in time in-
terval ∆t, vij(= vi − vj) relative velocity and xij(=
xi − xj) relative position where subscripts ij denote
that ith sphere collides with jth sphere in ∆t. The
brackets denotes the ensemble average. The mean-
square displacement is calculated by

M2(t) =
1
N

N∑
i=1

⟨|xi(t) − xi(0)|2⟩. (5)

The long-time self-diffusion coefficient is defined by

DL
s = lim

t→∞

M2(t)
6t

. (6)

It indicates how easy for spheres to diffuse. The self
intermediate scattering function is defined by

Fs(k, t) =
1
N

N∑
i=1

exp (−ik · {xi(t) − xi(0)}) , (7)

where k is the wave vector. In the case of the isotropic
system, it is calculated by

Fs(k, t) =
1
N

N∑
i=1

sin(k|xi(t) − xi(0)|)
k|xi(t) − xi(0)|

, (8)

where k(= |k|) denotes the wave number. The non-
Gaussian parameter is calculated by

α2(t) =
3
5

M4(t)
M2(t)2

− 1, (9)

where M4(t) is the mean-forth displacement.

4. Simulation results

Figure 2 shows the results of the mean-square
displacement for the 15% polydisperse system. At the
short time region, M2(t) is proportional to t2. It means
that the spheres show ballistic motion. On the other
hand, M2(t) is proportional to t due to the diffusive
motion at the long time region. At the intermediate
time region, the cage effect can be seen at high volume
fraction. Here the sphere is hard to move because it
is surrounded by other strong interacting spheres like
the cage, which is called the cage effect. As the volume

Fig.2 A log-log plot of the mean-square displacement
versus time. ϕ = 0.500, 0.510, 0.520, 0.530, 0.540,
0.550, 0.560, 0.570, 0.580, 0.590, 0.600, 0.610, and
0.620 (from left to right).
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Fig.3 A semi-log plot of the long-time self-diffusion
coefficient versus the volume fraction. Filled circles in-
dicates the simulation results of the 15% polydisperse
system and open square monodisperse system.

Fig.4 A plot of the pressure versus the volume frac-
tion. Filled circles indicate the simulation results of
the 15% polydisperse system, open squares those of
the monodisperse system started from FCC configu-
ration, and open triangles those of the monodisperse
system started from random configuration.

fraction is increased, the cage effect becomes strong
and it takes longer time for the spheres to go through
the cage. Therefore the length of the intermediate
time region is extended at the high volume fraction.
Nevertheless, the crystallization does not occur and
there exists the diffusive motion at long time region
at the high volume fraction on the 15% polydisperse
system.

Fig.5 A semi-log plot of the non-Gaussian parameter
versus time. The solid line indicates the simulation
results at ϕ = 0.550, the dashed line ϕ = 0.590, and
the dotted line ϕ = 0.600.

Fig.6 A semi-log plot of the self intermediate scat-
tering function versus time. ϕ = 0.500, 0.510, 0.520,
0.530, 0.540, 0.550, 0.560, 0.570, 0.580, 0.590, 0.600,
0.610, and 0.620 (from left to right). The wave number
is 3.53.

The simulation results of the long-time self-
diffusion coefficient DL

s are shown in Fig. 3. It de-
creases as the volume fraction is increased. On the
monodisperse system, DL

s can be obtained till ϕ =
0.535, because the crystallization occurs for ϕ > 0.535.
On the other hand, we can obtain DL

s for ϕ > 0.535 on
the 15% polydisperse system because the crystalliza-
tion does not occur. In addition to that, DL

s on the
15% polydisperse system is larger than that on the
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monodisperse system for ϕ < 0.535. The spheres are
therefore easier to diffuse on the 15% polydisperse sys-
tem than the monodisperse system. We note that DL

s

on both systems decreases rapidly around ϕ = 0.550.
Figure 4 shows the simulation results of the pres-

sure. On the polydisperse system, several unstable
jumps of the pressure can be seen near the transi-
tion points of the monodisperse system. Despite those
jumps, DL

s shows smooth decrease with increasing vol-
ume fraction ϕ in Fig. 3. This is because it is difficult
to reach an equilibrium state for the 15% polydisperse
system at high volume fraction within our simulation
time. We note that the freezing point ϕf = 0.506 and
the melting point ϕm = 0.535 on the monodisperse
case in the present simulation.

The simulation results of the non-Gaussian pa-
rameter for the 15% polydisperse system α2(t) are
shown in Fig. 5. As the volume fraction is increased,
the position of peaks is shifted to the long time and
the value of peak hight becomes large. This increase of
the peak hight indicates that the spatial structure of
the system is heterogeneous at high volume fractions.
Here we also could not find the jump of the peak hight
with increasing the volume fractions. The change of
the α2(t) with the increase of the volume fraction is
continuous.

Finally the simulation results of the self interme-
diate scattering function are shown in Fig. 6. Here the
wave number k is 3.53. It is determined by the first
peak position of the static structure factor. At the
low volume fraction, the self intermediate scattering
functions obey the exponential decay. At the higher
volume fraction, the shoulders can be seen because the
correlation of density fluctuation is kept by the cage
effect in the intermediate time region. Those shoulders
of the self intermediate scattering function are known
as the characteristics of a supercooled liquid state.

5. Conclusions

The supercooled liquid state has been obtained
by performing the molecular-dynamics simulation of
the 15% polydisperse hard-sphere fluids with 10976
spheres. We can see the supercooled liquid state
clearly by analyzing the self intermediate scattering
function and non-Gaussian parameter. In addition to
that, the jump of the physical quantities except for
the pressure has not seen with increasing the volume
fraction on the 15% polydisperse system due to avoid-

ing the crystallization. The detailed crossover phe-
nomena from a liquid phase to a supercooled liquid
will be discussed elsewhere. It is noted that we per-
formed the present simulations from only one initial
random configuration at each volume fraction. There-
fore the unstable jump of the pressure is possibly due
to observing the pressure on a metastable state from
the specific initial configuration within our simulation
time. In the future work, the simulation will be done
for the several initial configuration and the ensemble
average for the simulation results will be taken.
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