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Summary

We investigate the dynamics of liquids and supercooled liquids whose pair interac-
tion is described by the Lennard-Jones potential by means of extensive molecular dynam-
ics simulations and analyze the simulation results using the mean field theory for liquids
and supercooled liquids suggested by Tokuyama. From comparing the results between
the one-component system and the binary-mixture system in which we adopt the Kob-
Andersen model, we confirm the universality for the long-time self-diffusion coefficient
over the both systems. In addition, we also confirm that it is suitable for representing
the dynamics of liquids and supercooled liquids in the both systems to use the long-time
self-diffusion coefficient as a control parameter.

1. Introduction

Liquids can become glasses followed by super-
cooled liquids if crystallization does not occur. Stud-
ies of glasses and supercooled liquids have long history
[1, 2]. However, the mechanisms of the glass transition
and the origin of the slow dynamics near the glass tran-
sition point have not been theoretically elucidated yet.
Recently, dynamical heterogeneity of the supercooled
liquids near the glass transition point has received at-
tention [3]. It is considered that the heterogeneity is
related to the origin of the glass transition mechanisms
lead us to the slow dynamics.

The most mainstream theory in study of glasses
and supercooled liquids is the mode coupling theory
for supercooled liquids [4, 5]. This brightened up
the study of glasses and supercooled liquids. How-
ever, there are some problems for applying the mode
coupling theory to the dynamics of glasses and super-
cooled liquids because that is the theory developed for
critical phenomena originally. It is not clear whether
the glass transition is critical phenomenon or not. The
mean field theory (MFT) for liquids and supercooled
liquids has been suggested by Tokuyama [6]. It pre-
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dicts the dynamics of the supercooled liquids and gives
suggestions that universality exists over glass-forming
systems [7].

According to the above discussion, we investigate
the dynamics of liquids or supercooled liquids for an
one-component system and a binary-mixture system
by means of extensive molecular dynamics simulations.
In the both systems, we set a pair-interaction as the
Lennard-Jones potential. Especially, in the binary-
mixture system we adopt the Kob-Andersen model
[8, 9] as a simulation model. It is known that in that
model crystallization does not occur, and stable su-
percooled liquids and glasses are obtained after a long
time calculation.

The goal of our study is to elucidate the mecha-
nisms of the glass transition and the origin of the slow
dynamics. In this paper, we aim to understand the
universality over the one-component system and the
binary-mixture system. In the next section, we intro-
duce the equations of the mean square displacement
and the long-time self-diffusion coefficient predicted by
the MFT. The simulation model we used is explained
in section three, and we show and discuss the simula-
tion results in section four. Finally, we conclude this
paper in the last section.
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2. Mean Field Theory for Supercooled
liquids

We consider a three-dimensional equilibrium sys-
tem whose temperature is T , whose volume V , and
which contains N particles with mass m and radius a.
The mean square displacement is defined as

M2(t) :=
1
N

N∑

i=1

〈
{Xi(t)−Xi(0)}2

〉
, (1)

where Xi(t) denotes the position vector of i-th parti-
cle at time t and the brackets the canonical ensemble
average. The mean field theory (MFT) predicts that
the mean square displacement for molecular systems
obeys the following differential equation [6]:

d
dt

M2(t) = 6DL
s + 6
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s

)
e−

M2(t)
l2 , (2)

where v0(=
√

3kBT/m) denotes the average velocity
of a particle, DL

s the long-time self-diffusion coefficient,
and l the mean-free path. The long-time self-diffusion
coefficient and the mean-free path depend on the con-
trol parameter such as an inverse temperature and a
volume fraction. The solution of Eq.(2) is obtained by
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(3)

Characteristic times, τf and τL, are defined as τf :=
l/v0 and τL := a2/DL

s , respectively. Here, one can ob-
tain the following asymptotic forms for the each char-
acteristic time

M2(t) '




(v0t)2 for t ¿ τf ,

6DL
s t for τL ¿ t.

(4)

The long-time self-diffusion coefficient DL
s is deter-

mined by the second equation of Eq.(4) and the mean-
free path l by a fitting with experimental or simulation
data.

The MFT also predicts that the long-time self-
diffusion coefficient for molecular systems is described
by the following singular type function [6]:

DL
s (p) =

1

1 + ε
(

p
pc

)(
1− p

pc

)−2 , (5)

where p denotes the control parameter, ε a fitting pa-
rameter dominated by only interactions among parti-
cles, and pc a singular point which reflects the details
of system.

Tokuyama has suggested a ”non-singular type”
function for the long-time self-diffusion coefficient [10].
Although the singular type MFT (5) deviates from the
experimental or simulation results at low temperature
range in general, it is still effective when we investigate
the universality over glass-forming systems. Therefore,
we analyze the simulation data using the singular type
equation (5) in this paper.

3. Simulation Model

We consider an one-component molecular system
which contains uniform particles (particle O) where
the number of O particles is given by NO, and a binary-
mixture molecular system which contains two kinds of
particle (particle A and particle B) where the numbers
of A particles and B particles are given by NA and
NB , respectively. In both systems, the particles are
confined in a certain space domain with volume V , and
we do not consider the interaction with the boundary
of the domain. We investigate the dynamics of those
systems in which the control parameter is given by the
inverse temperature β(= 1/kBT ) where kB denotes
the Boltzmann constant.

The motion of particles is described by the New-
ton equation

d2

dt2
Xi(t) = −∇i

N∑

j(6=i)

φηξ(Xij), (6)

where ∇i denotes derivative with respect to Xi, Xij =
|Xi−Xj |, and the pair interaction φηξ(r) is described
by the Lennard-Jones potential

φηξ(r) = 4εηξ

[(σηξ

r

)12

−
(σηξ

r

)6
]

, (7)

where σηξ denotes a Lennard-Jones potential param-
eter which corresponds to the diameter of the parti-
cle, εηξ another parameter which has energy dimension
and corresponds to the depth of the potential, and η

and ξ a kind of particle; {η, ξ} ∈ {O, A,B}. In the
one-component system, parameters are σOO =: σ and
εOO =: ε, and we set the number density as 0.90σ−3.
Furthermore, in the binary-mixture system, we adopt
the Kob-Andersen model [8] in which the parameters
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of the Lennard-Jones potential are given by

σAB

σAA
= 0.8,

σBB

σAA
= 0.88,

εAB

εAA
= 1.5,

εBB

εAA
= 0.5,

(8)
and the number density is set as 1.2σAA

−3.
In order to perform the simulations, we use the

Lennard-Jones units. In the one-component system,
the length is scaled with σ, the energy with ε, the
temperature with ε/kB , and the time with σ

√
m/48ε.

Similarly, in the binary-mixture system the length is
scaled with σAA, the energy with εAA, the tempera-
ture with εAA/kB , and the time with σAA

√
m/48εAA.

The number of particles is given by NO = 10976
in the one-component system and NA = 8780 and
NB = 2196 in the binary-mixture system, where
NA + NB = 10976. The particles are in a cubic cell
with the length LOC = 23.00σ in the one-component
system, and LBM = 20.89σAA in the binary-mixture
system. The periodic boundary conditions are em-
ployed and the cutoff distance of the interaction is
set as 2.5σ and 2.5σAA in the one-component and the
binary-mixture system, respectively. We employ the
face-centered cubic (FCC) configuration as the initial
configuration in the one-component system, while a
random configuration in the binary-mixture system.
In order to observe equilibrium data, we firstly wait
for time which is ten times as long as the relaxation
time for each temperature, and then we measure sim-
ulation data.

4. Results

4.1 Mean Square Displacement
Figs. 1 and 2 show the results of the mean square

displacement for the O particle in the one-component
and for the A particle in the binary-mixture system,
respectively.

In the one-component system, the results of the
mean square displacement are in good agreement with
the MFT fitting. In the binary-mixture system, the
results agree with the Eq.(3) for higher temperature,
while those deviate slightly from the Eq.(3) at an in-
termediate time for dimensionless temperature lower
than 0.500. This must be because the system is still
not equilibrium. Since a reorientation time is very
long, the systems at low temperature could stay in the
non-equilibrium metastable state.
4.2 Long-Time Self-Diffusive Coefficient

Fig. 3 shows the fitting results of the long-time

-5

-4

-3

-2

-1

0

1

2

3

4

lo
g
1
0
(M

2
(t
))

6543210-1-2

log
10
(t)

Fig.1 A log-log plot of the results of the mean square
displacement versus time in the one-component sys-
tem for different dimensionless temperatures T =2.50,
1.67, 1.25, 1.00, and 0.794 (from up to bottom). The
open squares indicate the simulation results and the
solid lines the MFT fitting lines.
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Fig.2 A log-log plot of the results of the mean square
displacement versus time in the binary-mixture sys-
tem for different dimensionless temperatures T =1.00,
0.833, 0.714, 0.625, 0.556, 0.500, 0.455, and 0.417
(from up to bottom). The open circles indicate the
simulation results and the solid lines the MFT fitting
lines.

self-diffusion coefficient in the one-component and the
binary-mixture systems. In the one-component sys-
tem, one can not measure them since crystallization
occurs for T < 0.724 (β > 1.38).

In the high temperature region, the results of the
long-time self-diffusion coefficient are good agreement
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Fig.3 A semi-log plot of the results of the long-time
self-diffusive coefficient versus the dimensionless in-
verse temperature β in the one-component and the
binary-mixture systems. The open squares indicate
the simulation results in the one-component system,
the closed circles in the binary-mixture system, and
the solid lines the MFT fitting lines with ε = 374
and βc = 3.74 in the one-component system and with
ε = 374 and βc = 2.13 in the binary-mixture system.
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Fig.4 A semi-log plot of the results of the long-
time self-diffusive coefficient versus the inverse tem-
perature scaled by the value of singular point in the
one-component (open squares) and the binary-mixture
(closed circles) systems.

with the singular type MFT equation (5). However,
the simulation results deviate from fitting line by the
MFT in the low temperature region. The parameters
for fitting are ε = 374, βc = 3.74 in the one-component
system and ε = 374, βc = 2.13 in the binary-mixture
system. As mentioned in [10], it is known that the
parameter ε in Eq.(5) depends on type of the interac-
tions but does not depend on the details of the system,
while the singular point pc (in our system, pc = βc)
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Fig.5 A plot of the results of the mean-free path versus
the inverse temperature in the one-component and the
binary-mixture systems. The open squares indicate
the simulation results in the one-component system
and the closed circles in the binary-mixture system.

depends on the details.
A semi-log plot of the simulation results of the

long-time self-diffusion coefficient is shown versus β/βc

in Fig. 4. If one regards the variable as the β/βc in-
stead of β, a parameter of the singular type MFT equa-
tion is given by only ε. This is one of universalities that
the MFT suggests over the glass-forming systems de-
scribed by the same type of interactions. In fact, the
results of the one-component system agree with that
of the binary-mixture system (see Fig.4). Moreover,
Gallo’s system, which is the simulation model dom-
inated by the Lennard-Jones potential and contains
huge particles in simulation cell [11], has the same
value of ε [10]1.
4.3 Mean-Free Path

Fig. 5 shows the fitting results of the mean-free
path in the one-component and the binary-mixture
systems. The mean-free path corresponds to a length
in which a particle can do ballistic motion without any
interactions. In the both systems, the mean-free path
decreases rapidly in higher temperature (lower inverse
temperature) region, and the plateaus appear at in-
termediate temperature region. In the one-component
system, one can not measure the mean-free path as
well as the long-time self-diffusion coefficient for T <

0.724 (β > 1.38). In the binary-mixture system, the
mean-free path decreases gently in lower temperature

1. Note that the unit to perform the simulation is different be-
tween this paper and [10].
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Fig.6 A semi-log plot of the results of the mean-free
path versus the long-time self-diffusion coefficient in
the one-component and the binary-mixture systems.
The open squares indicate the simulation results in
the one-component system and the closed circles in
the binary-mixture system. The mean-free path re-
sults of the one-component system are multiplied by
LBM/LOC =20.89/23.00.

(higher inverse temperature) region.
In Fig.6 a semi-log plot of the results of the mean-

free path is shown versus the long-time self-diffusion
coefficient. In order to compare the mean-free path
in the one-component system to that in the binary-
mixture system, the results of the one-component sys-
tem are rescaled by LBM/LOC =20.89/23.00. In Fig.
6 the behavior of the mean-free path in the one-
component system is good agreement with that in the
binary-mixture system. This is another universality
over the both systems.

5. Conclusions

We have analyzed the dynamics of liquids or su-
percooled liquids, in which the pair-interaction is de-
scribed by the Lennard-Jones potential, according to
the mean field theory for liquids and supercooled liq-
uids. In comparison between the one-component sys-
tem and the binary-mixture system, we reveal the uni-
versality of the long-time self-diffusion coefficient over
the both systems, i.e. those of the systems dominated
by the same interactions could be described by the
master curve. Furthermore, we confirm that the long-
time self-diffusion coefficient is suitable as a control
parameter for representing the universality over the
both systems. Existence of universality leads us to
treat simpler and more fundamental model.

This work was partially supported by Grants-in-
aid for Science Research with No.(C)18540363 from
Ministry of Education, Culture, Sports, Science and
Technology of Japan. The calculations were performed
using the SGI Altix3700Bx2 in Advanced Fluid Infor-
mation Research Center, the Institute of Fluid Science,
Tohoku University.
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