
Compressed-Exponential Relaxations in Trehalose Glass1

Jeong-Ah SEO2, Hyun-Joung KWON3, Hee-Mi LEE4, Hyung kook KIM5 and Yoon-Hwae HWNAG6

Summary

We measured the α-relaxation in trehalose glass by using photon correlation spec-
troscopy(PCS). The α-relaxations of trehalose glass showed a crossover from stretched-
to compressed-exponential relaxations as the temperature increased. From the Raman
scattering measurements, we found that the unusual compressed-exponential relaxation
in trehalose glass was caused by the change of glycosidic linkage structure in trehalose
molecule.

1. Introduction

There are many strategies in nature for long-term
survivals of organisms and a bio-protect effect is one
of the most interest among those long-term survival
processes. The stabilizing role of trehalose on bio-
molecules has been recognized for many years in bi-
ological, pharmaceutical and food sciences[1, 2, 3, 4].
A α, α-trehalose composed by two molecules of glu-
cose is a well-known non-reducing disaccharide that is
commonly found in yeast, fungi, bacteria, mushroom,
and desert plants, and is known as the most effective
sugar for protecting the bio-molecules. However, the
origin of the protection mechanism is still remaining as
an open question and there are various opinions about
the protection mechanism in trehalose glasses[5, 6, 7].

In this study, we are interested in the relaxation
process of trehalose glass. The study of the relaxation
process of trehalose glass is an interesting topic to un-
derstand the dynamics of molecules in a glass state.
We believed that it will be helpful to understand the
protection mechanism of trehalose glasses.
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2. Experiments

Trehalose dihydrate was sponsored by Cargill
Corporation and dried by using moisture ana-
lyzer(Sartorius MA100, Germany) at 130 oC for 5
hours. The trehalose glass was made by using mi-
crowave oven[8] because the microwave oven is an
effective method to heat the trehalose quickly and
uniformly without caramelization process during the
heating.

In a photon correlation spectroscopy(PCS) ex-
periment, the Brookhaven BI-9000AT digital corre-
lator (Brookhaven Instruments Corp., U.S.A.) was
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Fig.1 The |φ(t)2| of depolarized components for dif-
ferent temperatures from 110 oC to 180 oC. The solid
lines are the fits to the square of stretched-exponential
function.
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Fig.2 The stretched exponent β of trehalose glass with
increasing temperature. The slope of β was changed
around 140 oC and showed the bigger value than 1
above 140 oC.

used to measure the correlation function, G(t), of tre-
halose glass. The Brookhaven correlator can cover ten
decades of time(10−1µs ∼ 109µs). The incident beam
was a vertically polarized 514.5 nm green light of Ar-
ion laser (I90-C, Coherent, USA) with 200 mW power
and single mode fiber optic was used for detecting the
scattered light. The depolarized (VH) components of
the scattered light were selected by a Glan-Thompson
Analyzer with a leakage factor of less than 1%. A
scattering geometry was 90o. The time range used in
this study was 103µs ∼ 108µs and the scattering wave
number q was fixed at 2.4×105 cm−1 (θ = 90o).

In a Raman spectroscopy measurement, the back-
scattering geometry was used. The incident beam was
a vertically polarized 514.5 nm green light of Ar-ion
laser (I90-C, Coherent, USA) with 100 mW power.
The scattered light was measured by using monochro-
mator (Acton Research, Spectra Pro-750, USA) and
charge coupled device (AndorMCD, USA) in the scat-
tering wave vector range of 1000∼1200 cm−1.

3. Results & Discussion

We measured the α-relaxations in trehalose glass
by using photon correlation spectroscopy(PCS) at
temperatures ranging from 110 oC to 180 oC. Figure 1
shows the |φ(t)|2 of VH components in trehalose glass.
The symbols are experimental results and the solid
lines are the fits to the square of stretched-exponential
function

|φ(t)|2 = f2
c exp(−2(t/τ)β) (1)

with fitting parameters, non-ergodicity parameter fc,
relaxation time τ , and stretched exponent β.

Figure 2 shows the stretched exponent β of tre-
halose glass at temperatures ranging from 110 oC
to 180 oC. The stretched exponent β increased with
increasing temperature and the slope was changed
around 140 oC. Moreover, the stretched exponent β

is bigger than 1 above 140 oC. This result indicates
that the relaxation process of trehalose glass changed
from stretched- to compressed-exponential relaxations
around 140 oC. While such compressed-exponential re-
laxation with β > 1 may seems unusual, similar be-
havior has been observed on a number of soft solids
including colloidal gels[9], micellar polycrystals[10],
and clays[11]. Recently, Bouchaud and Pitard[12]
suggested a specific model about the compressed-
exponential relaxation which associates with the local
rearrangement or micro-collapse of particles. In this
study, we believe the compressed-exponential behav-
ior in trehalose glass was caused from a intra molec-
ular structure change of trehalose molecule based on
the X-ray diffraction experiment results which will be
described in another publications.

We expected that the structure change in tre-
halose molecule may originated from the change of
out-of-ring vibrations(glycosidic linkage) between glu-
cose molecules. To find the change of out-of-ring vi-
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Fig.3 Raman spectra of trehalose at 50 oC, 100 oC,
150 oC, and 200 oC(from bottom to top).
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bration, we measured the Raman spectra of trehalose
glass in the wavenumber range of 1000∼1200 cm−1

because the Raman scattering spectra of trehalose
glass shows the out-of-ring vibrations(glycosidic link-
age) around 1140∼1150 cm−1 due to the coupling of
C-O stretching(ν (C-O)), C-H bending(δ (C-H)), and
C-O-H stretching(ν (C-O-H)) modes[13].

Figure 3 shows the Raman spectra of trehalose
glass at different temperatures. We fitted the data
by using Equation (2) that the convoluted Lorentzian
functions with a Gaussian-shape laser line.

I(ω) = I0 +
2Aµ

π
(

Γ
4(ω − ωc)2

+ Γ2) (2)

+
(1− µ)

√
4 ln 2√

πΓ
exp(−4 ln 2

Γ2
(ω − ωc)2).

Here, I(ω) is the intensity of scattered light, µ is an ad-
justable parameter which depends on the instrument
factor, Γ is a damping factor related to the bulk and
shear viscosity of the system, ω is the frequency, and
ωc is the position of the Brillouin shift.

Figures 4 shows the Raman peak shift of tre-
halose glass[14]. The Raman shift showed a con-
stant value at the temperature range 40 oC ∼ 135
oC and started to decrease at the temperature around
135 oC. It indicates that the glycosidic bond of tre-
halose molecule was changed around 135 oC. From
this result, we concluded that the unusual compressed-
exponential relaxation in trehalose glass was caused
by the change of the out-of-ring vibrations(glycosidic
linkage structure) in trehalose molecule.
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Fig.4 Raman peak shifts of trehalose glass. The slope
of Raman shift was changed around 135 oC.

4. Conclusions

We measured the α-relaxation in trehalose glass
by using photon correlation spectroscopy(PCS) at
temperatures ranging from 110 oC to 180 oC. The
α-relaxations of trehalose glass showed a crossover
from stretched- to compressed-exponential relaxations
as the temperature increased. From the Raman scat-
tering measurements in the range of 1000∼1200 cm−1,
we found that the slope of Raman shift was changed
around 135 oC. From this result, we concluded that
the unusual compressed-exponential relaxation in tre-
halose glass maybe caused by the change of glycosidic
linkage structure in trehalose molecule.
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