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Summary

The Brownian dynamics simulations are performed for the monodisperse magnetic
colloidal chains, the binary colloidal chains, and the polydisperse colloidal chains confined
in the thin films. As the magnetic field is increased, it is shown that the long-time self-
diffusion coefficient decreases for any chain lengths on those suspensions of chains. It is
also shown that the decrease of the long-time self-diffusion coefficient in those suspensions
with increasing the external magnetic field and the chains lengths resembles closely each
other in a liquid state and a supercooled liquid state.

1. Introduction

The external magnetic field is applied to the sus-
pensions of the magnetic colloidal particles. Above a
certain critical value of it, it is known that the col-
loidal chains of the particles are formed parallel to
the field. Those dense suspensions of the magnetic
colloidal suspensions are put into practice [1, 2]. The
research for the dilute suspensions of the magnetic col-
loidal chains confined in the thin films which is several
times as thick as the diameter of the colloidal particles
has recently become an interesting subject of discus-
sion among researchers. If the enough strong magnetic
field is applied perpendicular to the film, the colloidal
chains are also formed perpendicular to it and those
chains diffuse in a plane parallel to the film. The slow-
ing down of the chain motions has been observed on
those suspensions, as the magnetic field is increased.
The crossover phenomena from a liquid state to a su-
percooled liquid state have been observed in the di-
lute suspension of the polydisperse magnetic colloidal
chains [3, 4]. The thin limit of the film thickness is the
monolayer. The slowing down of the particle motions
in a plane parallel to the film has been also observed
on the monolayer suspensions [5, 6, 7]. In the dilute
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Fig.1 Schematic illustration of the dilute suspensions
of colloidal chains confined in the thin film.

suspension of the monolayer binary colloidal particles,
there also exist the crossover phenomena from a liquid
state to a supercooled liquid state [5]. On the other
hand, the phase transition from a liquid phase to a
crystal phase has been observed in the dilute suspen-
sions of the monolayer colloidal particles [6, 7]. The
purpose of this paper is to study the slow dynamics of
those systems by performing the Brownian dynamics
simulations.

2. Model

We consider the model system confined in the
thin film with thickness Lz which contains Nxy mag-
netic colloidal chains dispersed in an equilibrium sol-
vent with a viscosity η at temperature T (see Fig. 1).
The external magnetic field H(= Hez) is applied per-
pendicular to the film where ez is the unit vector of z

direction. The colloidal chains are in a direction par-
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allel to the external field. We set the lengths of all
colloidal chains to be nearly equal to the thickness of
the film. The fluctuations within the chains can be ne-
glected, because we assume that the applied external
field is enough strong to stabilize the colloidal chains.
The center mass of the chains lies on the center plane
of the film. Here the αth colloidal chain consists of
Nα

z magnetic colloidal particles and the colloidal par-
ticle i in the αth colloidal chain has the susceptibility
χα

i , the mass Mα
i (= 4πai

α
3
ρ/3), and the radius aα

i ,
where ρ is the mass density of the colloidal particle.
We set the value of ρ as the same as the mass den-
sity of the solvent. Nz denotes the average number of
the colloidal particles which form one colloidal chain.
The area fraction of the colloidal chains σ is given by
σ = π

∑Nxy

α=1 aα
1

2/S where the total area of the film
is S. The time evolution of the position of the αth
chain projected on the film (xy plane) Xα is described
by the stochastic diffusion equation on the time scale
tc(= a2/Dc)

d

dt
Xα(t)

=
1

Nα
z∑

i=1

Mα
i

∑

β 6=α

Nα
z∑

i=1

Nβ
z∑

j=1

F (rαβ
ij )Mα

i

γα
i

+ Vα(t) , (1)

where tc is the relaxation time for the colloidal chain
to diffuse a distance of the average radius a and Dc an
average diffusion coefficient of a single chain. A dipole
force between particle i in the αth chain and particle
j in the βth chain F (rαβ

ij )(= −∇U) is given by the
dipole potential U defined by

U(rαβ
ij )

=
1

4πµ0

(
−mα

i ·mβ
j

rαβ
ij

3
+ 3

(mα
i · rαβ

ij )(mβ
j · rαβ

ij )

rαβ
ij

5

)
(2)

where mα
i denotes the magnetic dipole moment of

l particle i in the αth chain, rαβ
ij = rα

i − rβ
j and

rαβ
ij = |rαβ

ij |. We assume that the dipole moment of
the particle is only proportional to an external field,
that is, mα

i ' 4
3πaα

i
3µ0χ

α
i H, because we only con-

sider the dilute suspensions and the applied external
field is enough strong. µ0 is the absolute permeability
of vacuum here. V α(t) denotes a Gaussian, Markov

random velocity with zero mean and satisfies

< Vα(t)Vβ(t′) >=2

Nα
z∑

i=1

Mα 2
i Dα

i δα,βδ(t− t′)E
(

Nα
z∑

i=1

Mα
i

)2 , (3)

where the brackets denote the ensemble average, Dα
i

the diffusion constant of the particle i in the αth chain,
and E d dimensional unit matrix.

3. Simulation Results and Discussions

We discuss three cases, the suspensions of (a) the
binary colloidal chains (Nxy = 6400), (b) the colloidal
chains with 15% polydispersity (Nxy = 6400), and
(c) the monodisperse colloidal chains (Nxy = 10000).
In the suspensions of the binary chains, we set the
parameters of the particles as those in Table 1 from
the experiment [5] except for the mass density. The
small (or big) colloidal chain consists of all identi-
cal small (or big) particles. The size polydispersity
of the colloidal particles in the polydisperse system
obeys the Gaussian distribution with standard devia-
tion s = 0.15. The particles with the different sizes are
homogeneously distributed in all chains on the poly-
disperse systems. Each chain is identical to other chain
in the suspensions of the monodisperse chain.

Figure 1 shows the mean-square displacement of
the chains on xy plane given by M2(t)(=< |Xα(t) −
Xα(t = 0)|2 >). M2(t) is proposed by Tokuyama
based on the mean-field theory [8]

M2(t) = `2 ln
[
1 +

(
Dc

DL
S

) {
e4DL

S t/`2 − 1
}]

, (4)

where ` indicates the mean-free path and DL
S the long-

time self-diffusion coefficient. M2(t) is asymptotically
described by

M2(t) =
{

4Dct, t < tc
4DL

S t, t À tc
. (5)

Table 1 The properties of the binary colloidal particles
in [5].

radius χp ∗ χp

χb

[µm] [Am2/T]
(b) Big particle 2.35 6.2× 10−11 1
(s) Small particle 1.4 6.6× 10−12 0.5035

∗ χp : Susceptibility of each particle p
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Fig.2 A log-log plot of the mean-square displace-
ment vs. time at σ = 0.03. (a) monolayer bi-
nary colloidal particles with ω = 0.1 at Γ =
10.00, 55.25, 110.5, 221.0, and 331.6, for (b) the
polydisperse colloidal chains with Nz = 5 at Γ =
5.195, 10.39, 51.96, and 103.9, and for (c) monodis-
perse colloidal chains with Nz = 2 at Γ =
5.195, 15.59, 20.78, and 25.98 from top to bottom.
The dashed lines indicate the simulation results on the
liquid state, the thin solid lines the supercooled liquid
state, and the thick solid line the crystal state.

At the short-time region, M2(t) of the chains for any
cases depends on the average chain lengths only, be-
cause the many-body interactions among chains have
little influence on the diffusive motions of chains yet.
Hence, M2(t) can be described by Dc only. Then, the
diffusion of them comes under the influence of those
interactions among chains with time. The value of
DL

S is therefore smaller than that of Dc. As Γ is in-
creased, the mean-square displacement at the long-
time region decreases. The reason comes from the
fact that the number of the pair of the particles in
the chains which contribute to the many-body inter-
actions among the chains is increased as the lengths
of the chains is increased. Here the dimensionless pa-
rameter Γ(= U(`0)

kBT ∝ H2) is the indicator of the in-
tensity of the dipole potential energy in the system
[7, 5, 8], where `0(= a/

√
σ) is the average distance

between the chains on xy plane. The simulation re-
sults on the monolayer binary colloidal particles with
ω = 0.1 are shown in Fig. 2(a), where ω denotes the
number ratio of the small colloidal chains to all chains.
Figure 2(b) shows those of the polydisperse chains with
Nz = 5. We could not distinguish between them qual-
itatively, although the chain lengths are different and
there exist the different distributions for the radius
of the particles in those suspensions. On those sus-
pensions, the system approaches to the supercooled
liquid state without the crystallization, as the mag-
netic field is increased. Even though Γ is very high,
M2(t) is proportional to t at the long-time region in
both suspensions. On the other hand, the crystalliza-
tion occurs at high Γ region on the suspensions of the
monodisperse colloidal chains. M2(t) at the long-time
region at Γ = 25.98 approaches to a constant value in
Fig.2(c). It is related with the amplitude of the lat-
tice vibration on a crystal phase. Despite the crystal
phase, M2(t) at the long-time region on the monodis-
perse case is also proportional to t. We can obtain the
long-time self-diffusion coefficient on the liquid state
and the supercooled state.

The colour scale maps of the relative long-time
self-diffusion coefficient to the diffusion constant of the
single chain on Nz −Γ plane for those suspensions are
shown in Fig. 3. The relative long-time self-diffusion
coefficient DL

S/Dc at any Nz decreases, as Γ is in-
creased. The only difference in those systems with
different chain lengths is that the relative long-time
self-diffusion coefficient of all chains confined in the
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Fig.3 The colour scale map of the relative long-time
self-diffusion coefficient to the diffusion constant of the
single chain on Nz−Γ plane for (a) the binary colloidal
chains with ω = 0.5, for (b) the polydisperse colloidal
chains, and for (c) the monodisperse colloidal chains.
The colour indicates the value of the relative long-time
self-diffusion coefficient.

thin film is bigger than that in the thick film at a
constant Γ. The reason is that the many-body inter-
actions between the long chains confined in the thick
film is much stronger than those in the thin film. For

DL
S/Dc < 0.07 ' 10−1.15 on monodisperse colloidal

suspensions, the crystallization occurs in Fig. 3(c).
On the polydisperse systems and the binary systems,
the long-time self-diffusion coefficient is obtained for
DL

S/Dc < 0.07. Here the region of the supercooled
state is proposed for DL

S/Dc < 0.00295 ' 10−2.53

by Tokuyama with analyzing the experiments and the
simulations in several systems based on the mean-field
theory [9].

4. Conclusion

In this paper, we performed the extensive Brow-
nian dynamics simulations on the suspensions of the
binary magnetic colloidal chains, the polydisperse
chains, and the monodisperse chains confined in the
thin films. It was found that the crystallization is
avoided on the suspensions of the polydisperse chains
and the binary chains. On both suspensions, the small
relative long-time self-diffusion coefficient is obtained
below the supercooled point DL

S/Dc = 0.00295 pro-
posed by Tokuyama [9] and there exist the supercooled
liquid state. It was also found that the decrease of
the relative long-time self-diffusion coefficient in those
three suspensions is similar to each other in a liquid
state and a supercooled state as Γ and Nz are in-
creased. We will discuss the details of the crossover
phenomena from a liquid state to a supercooled liquid
state on the suspensions of the binary chains and the
polydisperse chains elsewhere.
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