

A Preliminary Analysis of Wing Flutter Using Moving Grid Finite Volume Method

Hiromasa Hayashi, Daisuke Takayama, Shohei Matsuoka

Department of Aerospace Engineering, Tohoku University

2012-13 Boeing Higher Education Student Project Presentation October 15, 2013

Background

Wing flutter

- Aeroelastic phenomenon
- Diverging oscillation of a wing possibly causes wing destruction

http://www.ard.jaxa.jp/research/kitai/ki-kuuriki.html

Flutter Analysis

Fluid-structure interaction simulation

- Three numerical methods are combined
 - Fluid analysis
 - Structural analysis
 - Dynamic grid deformation

Past Flutter Analyses

Conservation equations for fluid flows

- Geometric conservation law
- Generalized curvilinear coordinate system

Flutter Speed Index (FSI) =
$$\frac{V_{\infty}}{b_s \omega_a \sqrt{\mu}}$$

Comparison of computed results by Chen et al and experimental data for AGARD wing 445.6

Geometrical flexibility is required for problems having engine nacelles

- New CFD code based on Moving Grid FVM is developed
- Control volume is extended in 4D space and time

Develop an unsteady flow calculation code based on Moving Grid FVM

- Conservation law in 4D space and time
- Validation of developed CFD code
 - Steady flow-field over ONERA-M6 wing
 - Unsteady flow-field over NACA 0012 wing in pitching motion
- Attempt to compute flutter of AGARD wing 445.6

Discretized equation for moving and deforming cell $\mathbf{Q}^{n+1}V_8 - \mathbf{Q}^n V_7$ $+ \sum_{k=1}^{6} (\mathbf{Q}^{n+\frac{1}{2}}n_t + \mathbf{E}^{n+\frac{1}{2}}n_x + \mathbf{F}^{n+\frac{1}{2}}n_y + \mathbf{G}^{n+\frac{1}{2}}n_z)_k V_k = \mathbf{0}$

k=1

Implicit integration form for Moving Grid FVM

$$[\mathbf{I} + \frac{1}{2V_8} \sum_{k=1}^{6} (\mathbf{I}n_t + \mathbf{A}^{(m)}n_x + \mathbf{B}^{(m)}n_y + \mathbf{C}^{(m)}n_z)_k V_k] \Delta \mathbf{Q}^{(m)} = -\frac{1}{V_8} [\mathbf{Q}^{(m)}V_8 - \mathbf{Q}^n V_7 + \sum_{k=1}^{6} \frac{1}{2} (\mathbf{Q}^{(m)}n_t + \mathbf{E}^{(m)}n_x + \mathbf{F}^{(m)}n_y + \mathbf{G}^{(m)}n_z)_k V_k + \sum_{k=1}^{6} \frac{1}{2} (\mathbf{Q}^n n_t + \mathbf{E}^n n_x + \mathbf{F}^n n_y + \mathbf{G}^n n_z)_k V_k]$$

Delta form : $\Delta \mathbf{Q}^{(m)} = \mathbf{Q}^{n+1} - \mathbf{Q}^{(m)}$ Number of inner iteration : *m*

Fluid analysis

- Governing equations : 3D Euler equations
- Spatial discretization : 3rd order Moving Grid FVM
- Convective numerical flux : SLAU (steady calculation)

: Roe (unsteady calculation)

• Time integration : matrix-free LU-SGS method with inner iteration

Structure analysis

- Governing equations : equation of motion
- Modal analysis : accounting for 1st to 5th modes
- Modal damping : 0.02
- Time integration : three point backward difference

Computational grid

Regenerated by algebraic method at each time step

Steady flow-field over ONERA-M6 wing

ONERA M6 wing

- Grid type : C-H type
- Number of grid points
 - : 197 × 50 × 82

- Flow conditions
 - Mach number : 0.84
 - Angle of attack : 3.06 [deg.]

NACA 0012 wing in pitching motion

Computational grid for NACA 0012 wing

NACA 0012 wing

- Number of grid points
 : 202 × 40 × 10
- Computational domain
 : 40 root chord lengths
- Minimum grid spacing
 - : 10⁻³ root chord length

Comparison of computed and experimental results 13

Freestream condition

- Mach number: 0.755
- Oscillating condition
- Mean angle of attack
 : 0.016 [deg.]
- Amplitude of pitching angle
 : 2.51 [deg.]
- Reduced frequency k
 : 0.0814

$$k = \frac{\omega c}{2U_{\infty}}$$

$$\omega: \text{frequency}$$

$$c: \text{root chord length}$$

$$U_{\infty}: \text{freestream velocity}$$

R. H. Landon, "Data set 3 NACA 0012 Oscillatory and Transient Pitching", Agard-r-702, 1982

Flutter analysis for AGARD wing 445.6

AGARD wing 445.6

Weakened wing model (model 3)

- Root chord length : 0.558 [m]
- Aspect ratio : 1.65
- Taper ratio : 0.658
- Swept angle : 45 [deg.]
- Cross-section airfoil : NACA 65A004

Mode	1st mode	2nd mode	3rd mode	4th mode	5th mode
	(bending)	(torsion)	(bending)	(torsion)	(bending)
Frequency [Hz]	9.6	38.2	48.3	91.5	118.1

Computational model and flow conditions

□ AGARD wing 445.6

- Number of grid points
 : 96 × 39 × 28
- Computational domain
 : 30 root chord lengths
- Minimum grid spacing
 - : 10⁻² root chord length

Flow conditions

- Mach number : 0.678, 0.901, 0.96, 1.072
- Angle of attack : 0.0 [deg.]

Computed results of damping response

Mach number=0.96, FSI=0.31

Computed results of neutral response

ļ

Mach number=0.96, FSI=0.318

Computed results of diverging response

Mach number=0.96, FSI=0.325

Flutter analysis results for AGARD wing 445.6

For other Mach numbers, FSI calculations are conducted in the same way

Ę

Summary

- Successfully developed an unsteady flow calculation code based on Moving Grid Finite Volume Method
- Code validation studies for steady and unsteady flows
 Reasonable agreements are indicated
- Preliminary flutter analysis is attempted
- Computed flutter boundaries show reasonable agreements with experimental data

Ţ

- Account for viscous effects
- Unstructured grid for including engine nacelles
- **Composite wing**

Back up

Wing flutter

- Aeroelastic phenomenon
- Diverging vibration of a wing which possibly causes wing destruction

Airplane design with a composite wing

- Flutter characteristics can be degraded by decreased stiffness
- Accurate prediction capability for flutter boundary needs to be established
 - Numerical simulation
 - Wing tunnel testing

Apply Gauss's divergence theorem to above eqs. $\mathbf{Q}^{n+1}V_8 - \mathbf{Q}^n V_7$ $+ \sum_{k=1}^{6} (\mathbf{Q}^{n+\frac{1}{2}}n_k + \mathbf{E}^{n+\frac{1}{2}}n_k + \mathbf{F}^{n+\frac{1}{2}}n_k + \mathbf{G}^{n+\frac{1}{2}}n_z)_k V_k = \mathbf{0}$

k=1

Take average of n -step and n+1 -step

$$\mathbf{Q}^{n+1}V_8 - \mathbf{Q}^n V_7 + \sum_{k=1}^6 \left[\frac{1}{2} (\mathbf{Q}^{n+1}n_t + \mathbf{E}^{n+1}n_x + \mathbf{F}^{n+1}n_y + \mathbf{G}^{n+1}n_z)_k V_k + \frac{1}{2} (\mathbf{Q}^n n_t + \mathbf{E}^n n_x + \mathbf{F}^n n_y + \mathbf{G}^n n_z)_k V_k \right] = 0$$

Apply inner iteration method

$$\mathbf{Q}^{(m)}V_{8} + \Delta \mathbf{Q}^{(m)}V_{8} - \mathbf{Q}^{n}V_{7}$$

+ $\sum_{k=1}^{6} \left[\frac{1}{2} \{(\mathbf{Q}^{(m)} + \Delta \mathbf{Q}^{(m)})n_{t} + \mathbf{E}^{(m+1)}n_{x} + \mathbf{F}^{(m+1)}n_{y} + \mathbf{G}^{(m+1)}n_{z}\}_{k}V_{k}$
+ $\frac{1}{2} (\mathbf{Q}^{n}n_{t} + \mathbf{E}^{n}n_{x} + \mathbf{F}^{n}n_{y} + \mathbf{G}^{n}n_{z})_{k}V_{k}] = 0$

Ē

inearization of E, F and G

$$\mathbf{E}^{(m+1)} = \mathbf{E}^{(m)} + \left(\frac{\partial \mathbf{E}}{\partial \mathbf{Q}}\right)^{(m)} \Delta \mathbf{Q}^{(m)} = \mathbf{E}^{(m)} + \mathbf{A}^{(m)} \Delta \mathbf{Q}^{(m)}$$

$$\mathbf{F}^{(m+1)} = \mathbf{F}^{(m)} + \left(\frac{\partial \mathbf{F}}{\partial \mathbf{Q}}\right)^{(m)} \Delta \mathbf{Q}^{(m)} = \mathbf{F}^{(m)} + \mathbf{B}^{(m)} \Delta \mathbf{Q}^{(m)}$$

$$\mathbf{G}^{(m+1)} = \mathbf{G}^{(m)} + \left(\frac{\partial \mathbf{G}}{\partial \mathbf{Q}}\right)^{(m)} \Delta \mathbf{Q}^{(m)} = \mathbf{G}^{(m)} + \mathbf{C}^{(m)} \Delta \mathbf{Q}^{(m)}$$

Finally the eqs. below are solved

$$[\mathbf{I} + \frac{1}{2V_8} \sum_{k=1}^{6} (\mathbf{I}n_t + \mathbf{A}^{(m)}n_x + \mathbf{B}^{(m)}n_y + \mathbf{C}^{(m)}n_z)_k V_k] \Delta \mathbf{Q}^{(m)} = -\frac{1}{V_8} [\mathbf{Q}^{(m)}V_8 - \mathbf{Q}^n V_7 + \sum_{k=1}^{6} \frac{1}{2} (\mathbf{Q}^{(m)}n_t + \mathbf{E}^{(m)}n_x + \mathbf{F}^{(m)}n_y + \mathbf{G}^{(m)}n_z)_k V_k + \sum_{k=1}^{6} \frac{1}{2} (\mathbf{Q}^n n_t + \mathbf{E}^n n_x + \mathbf{F}^n n_y + \mathbf{G}^n n_z)_k V_k]$$

Computed results of damping response

Mach number=0.678, FSI=0.421

Computed results of neutral response

Mach number=0.678, FSI=0.424

Computed results of diverging response

Mach number=0.678, FSI=0.430

Computed results of damping response

Mach number=0.901, FSI=0.351

Computed results of neutral response

Mach number=0.901, FSI=0.358

Computed results of diverging response

Mach number=0.901, FSI=0.362

Computed results of damping response

Mach number=1.072, FSI=0.405

Computed results of neutral response

Mach number=1.072, FSI=0.413

Computed results of diverging response

Mach number=1.072, FSI=0.420

Parameters of Flutter Speed Index

- $b_s: 0.279 \, [m]$
- $\omega_a:$ 239.8 [1/s]

Flutter Speed Index (FSI) =
$$\frac{V_{\infty}}{b_s \omega_a \sqrt{\mu}}$$

• V_{∞} [m/s]

• *μ* : 259.7

	Mach number of 0.678	Mach number of 0.901	Mach number of 0.96	Mach number of 1.072
Damping response	233.7	281.9	312.0	436.8
Neutral response	235.4	287.0	319.2	444.9
Diverging response	238.3	290.8	326.4	452.4

ONERA-M6 wing

- Number of grid points
 : 197 × 50 × 82
- Computational domain
 : 30 root chord lengths
- Minimum grid spacing
 - : 5×10^{-3} root chord length

Modal shapes of AGARD wing 445.6

2012-13 Boeing Higher Education Student Project Presentation

Parameters of the weakened model 3

- Share modulus : 0.41 [GPa]
- Young's modulus : 3.24 [GPa]
- Poisson's ration : 0.31

Mode	1st mode (bending)	2nd mode (torsion)	3rd mode (bending)	4th mode (torsion)	5th mode (bending)
Frequency of report by Yates [Hz]	9.6	38.2	48.3	91.5	118.1
Frequency of experimental data [Hz]	9.6	38.1	50.7	98.5	