Experimental Investigation of a Long Rise-Time Pressure Signature through Turbulent Medium

Boeing Executive Seminar

November 20th 2014 Tohoku University

Takahiro Ukai

Institute of Fluid Science, Tohoku University, Japan

Super Sonic Transport (SST)

Requirements for SST

- ✓ Sonic boom reduction
- ✓ Low-fuel consumption

Concorde SST, http://www.concordesst.com/home.html, (cited 19 January 2010)

Sonic boom signatures

Sonic boom estimation

Estimation tools

- ✓ Numerical simulation
- ✓ Wind tunnel testing

JAXA HP http://www.aero.jaxa.jp/research/kitaisystem/cyoonsoku/co-index.html

Design procedure

Sonic boom estimation is important to realize SST

Effect of the real atmosphere

Sonic boom propagating

The pressure waveforms affected by turbulence

Lee et. al, AL-TR-1991-0099, (1991)

Effect of turbulence

Phenomenon observed in flight tests

Kenneth et al. AIAA paper 2004-2923 (2004)

The low sonic boom signature is also affected by turbulence

Time, seconds from bow shock

Plotkin et al. AIAA paper 2005-10, (2005)

Laboratory-scale experiments

Ballistic ranges have ability to simulate turbulence interaction with a low sonic boom

Objective

Investigate the effect of turbulence on a pressure signature with the long rise time in a ballistic range facility

- Evaluate a distortion of a waveform with N-shape
- Evaluate a distortion of a waveform with the long rise time

Experimental setup

> Ballistic range in Institute of Fluid Science, Tohoku Univ.

> Measurement techniques

- ✓ Pressure transducer: <u>Pressure waveform</u>
 PCB Piezotronics, INC. Model-113B28
 Rise time under 1 µs, resolution of 7 Pa
- ✓ Schlieren photography and point diffraction interferometry : <u>Density field</u> HPV-X Shimadzu Corp., high-speed camera
 200 kfps and the exposure time of 1 µs

Test section

Projectiles

✓ Setup flight Mach number of 1.4 and 1.5

Specification of jet impingement

✓ Jet gas: Dry air

Results

Schlieren image (Cylindrical projectile)

12

Without shock-turbulence interaction, M = 1.50

Sequential PDI images

Processed pressure waveforms

14

Schlieren image (Conical projectile)

Without shock-turbulence interaction, M = 1.35

Sequential schlieren images

Pressure waveforms

The turbulence effect was not critical issue for the long rise time pressure signature With interaction

Summary

Turbulence effect on a pressure signature with the long rise time was experimentally investigated in a ballistic range facility

- The effect of turbulence on the N-shape waveform can be investigated in present experiment because of consistent with previous observation.
- \checkmark The shock wave front was distorted by turbulence.
- The turbulence might not affect the pressure field generating the long rise time.

Future works

- Evaluate statistics value for the effect of turbulence on the long rise time pressure signature.
- ✓ Define the standard for evaluation of the long rise time pressure signature.

Thank you for your attention

Questions?