Next Generation Transport Aircraft Workshop, Mar. 20, 2015

Control of the Magnetic Suspension and Balance System for Dynamic Wind-Tunnel Testing

Takumi Ambo **TOHOKU UNIVERSITY** Dept. of Aerospace Engineering

Introduction

Background

Dynamic Wind-Tunnel Testing (DWT)

- ► In order to understand nonlinear aerodynamic behavior of aircraft, it is necessary to clarify unsteady phenomena.
- ➤ In general, aircraft model is oscillated or rotated by using robotic manipulator.

Support interference effects

- The interference of support and airflow makes measurement accuracy lower.
- ✓ Asymmetry of rolling moment (M. E. Beyers/ L. E. Ericsson, 1993)
- ✓ Effect on the vortex breakdown (G. S. Taylor/I. Gursul, 2005)
- Promotion of boundary-layer separation (L. E. Ericsson, 1990)

Magnetic Suspension and Balance System (MSBS)

(DLR, MPM)

Experiments

Test model

► Shape : Cylinder ≻Model size $: \phi 35 \text{ mm} \times 235 \text{ mm}$ ≻Magnet : Neodymium magnet ► Magnet size $: \phi 20 \text{ mm} \times 160 \text{ mm}$ ►Mass : 578.5 g

Test conditions

 \geq 1 DoF motion test

Axis	Amplitude (mm or deg)	Frequency (Hz)	
y, z, θ, ψ	1	0.6, 0.8, 1.0, 2.0, 9, 10	
	2		

> Unsteady magnetic field measurement

Axis	Position of probe	Amplitude	Frequency
	(mm)	(A)	(Hz)
y, z, θ, Ψ	-40, -80	6	0.8,, 20

■ Characteristics

- ► Levitated by magnetic force
- > Wind tunnel test without support interference
- \succ Multi-axis control
- ➤ Measuring aerodynamic forces

AGARD-B model (JAXA)

Objective

To develop control system of MSBS for dynamic windtunnel testing.

0.3m MSBS

Hardware Configurations

Model	(Neodymium magnet is inserted)
➤ Coils	(Forming magnetic field)
Sensor system	(Detecting model position)
Control system	(Control of model position)
Power Supply	(The current flows through the coil

The magnetic suspending system

► Magnetic forces

$$\begin{bmatrix} F = \int_{V} (M \cdot \nabla) H d\nu & \text{(Translational force)} \\ N = \int_{V} M \times H d\nu & \text{(Torque)} \end{bmatrix}$$

Results and discussion

Model motion test (Pitching direction) Gain Phase Amplitude=1deg --Amplitude=1deg -Amplitude=2deg -Amplitude=2deg ➤ When the input amplitude become big, gain is decreasing. Gain (dB) \succ The influence of the input amplitude is almost not seen. 10° Frequency (Hz) Frequency (Hz) **Unsteady magnetic field measurement (Pitching)** Gain Phase **-**≁-40mm **-**−-40mm \succ The big difference by the •-80mm --polynomial trendlin -polynomial trendlin $R^2 = 1.000$ $R^2 = 0.999$ position of measurement $v = -0.002456x^3 + 0.095317x^2 - 1.638989x - 3.625479$ Phase (deg) Gain (dB) is not seen. \succ The gain decrease and the phase is delayed when frequency become high. 10 10° 10 10° Frequency (Hz) Frequency (Hz) **Correction of magnetic force and Phase** Magnetic force Phase Comparison of the inertial Inertial force - Phase delay force and magnetic force Magnetic force -Phase delay (Corrected result Magnetic force \checkmark There are few difference from (Corrected resul Torque (Nm) 0 inertial by correction of (deg) magnetic force. Phase > The delay of inertial force to magnetic force

M: Magnetic moment (Wb·m) **H** : Magnetic field intensity (AT/m)

 \checkmark To balance Magnetic forces with Gravitational force \checkmark To control Magnetic forces by current value

The position sensing system

- The sensor system using CCD line sensor cameras
 - Detecting model edge and marker
 - The position is measured from two directions
 - The model is illuminated by red and blue LEDs with \checkmark different wavelengthsn

The position control system

- ➤ Model position control by PI control
 - ✓ Phase-lag compensation by Double phase advancer
 - ✓ Stabilizing by adjustment of proportional gain and amount of phase advance

Repulsion

Repulsion

S

10° 4 6 8 Frequency (Hz) 10

Frequency (Hz)

10

 \checkmark The phase difference becomes small by correction.

Conclusions

- > Model motion test was performed and frequency characteristics were measured.
- > The measurement of unsteady magnetic field was conducted and the correction of magnetic force and phase were performed.
- > It was found that large energy decrement and phase delay occur in formation of magnetic field.
- \succ The magnetic force approaches inertial force and phase delay becomes small by correction.

Future works

- > To improve measurement accuracy of unsteady aerodynamic force, quantitative analysis about the error of the parameter identification method, effect of small aerodynamic force and electromagnetic induction will be performed.
- ➤ To evaluate unsteady aerodynamic phenomenon, visualization method will be developed.