Visualization of Flow-field around a Magnetically-Suspended Model

Takumi Ambo, Shuhei Taniguchi, Daiju Noguchi, Takaya Otsuki

TOHOKU UNIVERSITY Dept. of Aerospace Engineering

Introduction

Background

- Magnetic Suspension and Balance System
 - Test model is levitated by magnetic force.
 - Wind tunnel test can be conducted without mechanical support system.
 - Aerodynamic forces can be calculated by current flowing through coils.
 - The position and attitude of the model for control are obtained by optical sensing system.

Flow Visualization

- Generally, flow visualization tests are conducted to clarify a flow field in wind-tunnel testing.

In MSBS, there are problems for visualization, because optical system of visualization might disturb the position sensing system.

Objective

To develop visualization method for magnetically-suspended model.

Sensing system of the MSBS

- The position sensing for control
 - The sensing system using CCD line sensor cameras
 - Detecting the edges and the marker of the model.
 - The position is measured from two directions, upper and lateral side.
 - 5 axes (x, y, z, pitch, yaw) can be detected by using 5 CCD cameras.
 - To decrease interference between sensing system and optical system of visualization, only blue LEDs are used for sensing.

Experimental Results

- Selection of luminescent pigment
 - Necessary conditions
 - Excitation light source is UV, and sensor LEDs are blue.
 - Long wavelength emission like yellow or red are needed.
 - Pigment with yellow emission was used.

- Levitation with oil putting and excitation light source
 - Interference between sensor and visualization system was prevented.
 - Levitation was succeeded.

- Acquisition of images in wind-tunnel testing
 - Images were acquired under ventilated condition.
 - Skin friction line was obtained by processing images.
 - Separation at trailing end of the model was visualized.

Summary

- Levitation succeeded.
- Suitable pigment from the viewpoint of measurement wavelength was selected.
- Acquisition of images under ventilation condition was succeeded.
- Skin friction line were obtained by image processing and separation line was observed.

Future works

- It is needed extension of visualized area.
- Application of other visualization method (PSP, TSP, etc.).