The 5th Boeing Higher Education Program November 18th 2015

A Development of Dynamic Wind Tunnel Testing Technique with a Magnetic Suspension and Balance System -Measurements of Dynamic Stability Derivatives of a Non-axisymmetric Model-

<u>Ryo Oshima, Manabu Yokoyama, Kei Komatsubara</u> (Institute of Fluid Science, Tohoku University)

- A development of high performance aircraft
 - Unsteady aerodynamic force
 - Dynamic stability derivatives

- Technical issue of dynamic wind tunnel testing
 - Support interference by moving the mechanical support system

Objective

A development of dynamic wind tunnel testing technique for winged model with MSBS

Minimum Success

Develop rolling moment control system in order to support non-axisymmetric model

Full Success

- Dynamic stability derivatives measurement for winged model
- Comparison between the test results and DATCOM

Development of Rolling Moment Control System

Improvement of sensing system
Measurement and adjustment of magnetic field for roll control

Translational and rotative forces are acting on small magnets

Dynamic Stability Derivatives Measurement

Forced Oscillation

Experimental Results

