Boeing Higher Education Program, Nov. 24, 2016

Investigation of Dynamic Characteristics of Delta Wing in Wind Tunnel Testing

Hayato Nagaike, TOHOKU UNIVERSITY Dept. of Aerospace Engineering

Introduction

Background

Delta Wing at High Angle of Attack

- > The position of the leading edge vortex (LEV) changes with wing's posture change, and the break and recovery of LEV happen
- Unsteady phenomenon to affect the stability and the maneuverability such as Wing rock phenomenon exists

Unsteady flow field at high angle of attack should be researched

Dynamic Wind Tunnel Testing

- > Experiment that simulate model motion and measure unsteady flow using a manipulator
 - Aerodynamic force and moment measurement
 - Flow visualization (laser light sheet method etc.)
 - Change of pressure field measurement

Data Processing

- Pressure from PSP figure
 - Summing up wind-on Images and wind-off Images
 - Averaging the intensity
 - Subtracting Dark images intensity from PSP images
 - Calculating the pressure by Stern-Volmer relationship
- Unsteady aerodynamic force
 - Subtracted wind-off data from wind on data
 - Low-Pass Filter
 - Phase averaging
 - Time drift correction

Results **Comparison with Pressure tap (Reference) data**

Aerodynamic force data process

ΌΗΟΚυ

UNIVERSITY

\rightarrow "Unsteady Pressure Sensitive Paint" **Pressure Sensitive Paint**, **PSP**

Stern-Volmer relationship

- $\frac{I_{ref}}{I} = A(T) + B(T) \frac{I}{D}$
- > A pressure measurement technique based on the oxygen quenching of luminescence
- Requirements for PSP characteristics to be applied to unsteady and low-speed flow
 - Fast response time
 - High pressure sensitivity, Low temperature sensitivity
- Polymer/Ceramic PSP (PC-PSP)
 - Can change its characteristics by types of polymers, particles and contents

Objective

- > To evaluate the applicability of the measurement method to low-speed flow by new **PC-PSP**
- > To measure unsteady pressure field of upper surface of forced rolling delta wing by **PC-PSP**, consider its dynamic flow field

Experimental Method

Wind Tunnel and Model

- Small Low Turbulence Wind Tunnel (TOHOKU UNIV.)
 - Opposite side distance : 290 [mm]
 - Turbulence intensity : 0.06 %
- Robot Manipulator "PA10" Delta Wing Model

TOHOKU UNIV. Robot Manipulator

Concept of the Pressure-Sensitive Paint

Ceramic particles Luminophore Polymer

Schematic view of PC-PSP

- Value of Pressure measured by PSP was shifted and it had a constant differential value
- \triangleright Compared with reference pressure value, PSP data was following the tendency
- With reference pressure value, this method can measure pressure field of surface

Steady and Unsteady measurement results

- Steady pressure field
 - Shown the suction (negative pressure) area caused by LEV
 - ① Symmetric suction area by LEV
 - Vortex burst at trailing region
 - 2 Asymmetric suction area by LEV
 - LEV grown longer and isolated on the left side
 - LEV extended and bursted on the right side
- Unsteady pressure field
 - Compared with steady result, shown different view of pressure field by dynamic effect
 - (4) Asymmetric suction area by LEV and dynamic effect of rolling **(5)** Delay of vortex burst on the right side (7)Delay of vortex recovery on the right side Advance of vortex isolating (8)

- Sweep angle : 65 [deg]
- Code length : 100 [mm]
- Thickness : 10 [mm]
- Sprayed PC-PSP
- ➢ PC-PSP "TUL1"
 - Optimized for unsteady and low-speed flow experiment
 - Near the atmospheric pressure, higher pressure sensitivity and Lower temperature sensitivity than conventional one

Pressure Taps

• Sufficient fast responsibility (Cut-off frequency is 2[kHz])

Experimental Setup

- Reference Pressure measurement
 - Pressure scanner "Net Scanner System 9116"
- > PSP figure measurement
 - UV LED
 - 16bit CCD camera (105mm lens, 650 ± 40 nm Band-Pass filter)
- Force measurement (Rolling moment)
 - 6 component balance "IFS-90M31A50-I50"
- Phase-Lock Method
 - It is effective to obtain high-SNR images for unsteady PSP measurement and similar to stroboscopical photography.
 - Trigger signal is produced at determined phase
 - Excitation light is synchronized to the trigger signal
 - PSP luminescent intensity is summed up

1.15

ž 1.05

0.95

y = 0.7745x + 0.225

y = 0.7309x + 0.2688

- Comparison with force measurement
 - PSP pressure data was compared with steady and unsteady result of force(rolling moment) measurement
 - Difference in right and left LEV structure produced the righting moment
 - Dynamic effect of rolling motion made the difference in upward and downward rolling moment. (Hysteresis)

Summary

- > Differential value of PSP and Pressure tap (Reference) is almost constant, therefor, correcting it can measure pressure field of surface quantitatively. > Unsteady pressure field caused by LEV burst and recovery was visualized and measured by unsteady PSP.
- **PA10 Pressure Scanner** Schematic of Setup Trigger level Trigger source Pulsed Pulse width excitation light Phase averaged image

6 Component Balance

Delta-Wing Model

Thermocouple

