Boeing Higher Education Program Year 2019 Performance Report Boeing Japan, Maru-no-uchi, Tokyo December 12, 2019 15:20 – 15:35

A study on Linear Reduced-order Model based on PIV Data of Flow Field around Airfoil

Koki NANKAI (Tohoku University, Japan)

Boeing Higher Education

Flow field around airfoil

- □ Flow separation (stall)
 - ✓ Decrease in lift
 - ✓ Increase in drag

Boeing Higher Education

Active flow control

- Separation control using PA
 - ✓ Lift enhancement
 - ✓ Drag reduction
 - ✓ Various control input
 - Voltage
 - Frequency
 - Burst frequency (F⁺)
- Feedback control
 - ✓ Control input based on output
 - ✓ High robustness
 - ✓ Necessary to know state of flow fields

A model which estimates the time advancement of flow fields is necessary

Construct the model of flow fields around an airfoil based on experimental data

- ✓ Experiment (Wind tunnel testing)
- ✓ Order reduction of data
- \checkmark Modeling by a linear equation

Experiment

Wind tunnel testing

Experimental setup (at IFS, Tohoku university)

✓ Particle image velocimetry (PIV)

Modeling approach

Order reduction of data using POD technique

□ Modeling using linear equation

- $z_{n+1} = A z_n$
- z_n : Flow field at *n*th time step
- A : Coefficient matrix

A is calculated from experimental (PIV) data

Results

PIV measurements

✓ Time-averaged velocity fields

✓ Time-resolved velocity fields

tU/c = 0.02

Results (α = 18 deg)

Reconstruction of fluid data using POD

tU/c = 0.02

Results (α = 18 deg)

Temporal estimation by the model

tU/c = 0.02

The linear reduced-order model of flow fields around the airfoil was constructed based on experimental data

- ✓ Experiment (Wind tunnel testing)
 - Velocity fields data were acquired by PIV
- ✓ Order reduction of data
 - The order of fluid data was reduced drastically by POD
- \checkmark Modeling by a linear equation
 - The model can reproduce the original data with low computational cost